DEC 14, 2019 12:36 PM PST

Molecules of the Year 2019

WRITTEN BY: Daniel Duan

Fullerene Crystal Structure (Wikimedia Common)

The Chemical & Engineering News, an outlet by American Chemical Society (ACS), polled its audience for the most interesting molecules that were reported in 2019.

Three carbon-based organic compounds are among the top three on the list: fullerene methane cage (19% of the total vote), Cyclo[18]carbon (20%), and an antiaromatic nanocage (29%).

Methane Trapped inside C60 Cage

In a study published in March, a team of chemists led by Richard J. Whitby, a Chemistry Professor at the University of Southampton created a fullerene cage with an interior cavity. The 17-membered inner ring can trap methane at high pressure. The molecule can then be closed off through the oxidization of a sulfur within its inner ring, releasing sulfur monoxide as a byproduct.

The researchers are excited about the prospective applications of their fullerene cage and intend to further explore its encapsulation of other small molecules such as oxygen gas, nitric oxide, ammonia, nitrogen gas, carbon dioxide, methanol, and formaldehyde.

The Advent of Cyclo[18]carbon

Carbon molecules are known for their diversely-structured allotropes. Scientists from IBM Research and Oxford University published their study this September, in which they synthesized, stabilized, and imaged a ring of eighteen carbon atoms for the first time.

The molecular carbon allotrope, known as cyclo[18]carbon, fascinate chemists because of its alternating single and triple bonds in its 18-membered carbon circle. However, until now no one has been able to achieve a successful synthesis and the characterization of the molecule due to its high reactivity.

Making and Imaging Cyclocarbon (IBM Research)

Antiaromatic Nanocage that Deshields Magnetic Field

In a study published in October, scientists at Tokyo Institute of Technology, the University of Cambridge, and the University of Copenhagen reported the development of a self-assembled cage-like molecule ("cage" seems a popular word in chemistry in 2019...). The compound has an unusual, three planar-wall that's made with antiaromatic nickel(II) norcorrole.

In chemistry, the word "aromatic" denotes an unsaturated ring (or rings) of carbon atoms linked with each other in alternating single and double bonds. Aromatic compounds allow their pi system electrons to be delocalized around the ring. The nickel(II) norcorrole moiety has the exact opposite property of that. As a result, any guest molecules that get stuck inside the cage have their hydrogen-1 nuclear magnetic resonance (1H-NMR) signals shifted downfield.

The nanocage molecule in this study represents a novel nanocavity for scientists to explore. The researchers hope that it can be used in nuclear magnetic resonance-based structural analysis, to help to interpret the configuration of the most complex organic compounds.

Source: C&EN

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
AUG 21, 2020
Chemistry & Physics
Biorubber glue reduces surgery time and improves pain relief
AUG 21, 2020
Biorubber glue reduces surgery time and improves pain relief
A study published recently in Biomaterials showcases a new development in biomaterials that could forever change th ...
AUG 27, 2020
Chemistry & Physics
Pheromone Molecule at the Center of Global Locusts Crisis
AUG 27, 2020
Pheromone Molecule at the Center of Global Locusts Crisis
Since earlier this year, agriculture and food production in the developing world have been taking heavy damages from an ...
SEP 01, 2020
Chemistry & Physics
New printing process turns paper into a keyboard interface
SEP 01, 2020
New printing process turns paper into a keyboard interface
Imagine taking a piece of paper from your notebook and turning it into a keyboard. Can’t visualize it? Well, now y ...
SEP 04, 2020
Microbiology
Researchers Discover a Way to Use Microbes to Help Make Plastic
SEP 04, 2020
Researchers Discover a Way to Use Microbes to Help Make Plastic
Researchers have discovered that some bacteria can make ethylene in a way we never knew about; microbes that metabolize ...
NOV 12, 2020
Chemistry & Physics
Can a Chemical Be Both Nurturing and Destructive?
NOV 12, 2020
Can a Chemical Be Both Nurturing and Destructive?
On August 4, a megascale explosion almost leveled half of Beirut, the capital city of Lebanon. At the center of the negl ...
NOV 13, 2020
Chemistry & Physics
Mid-IR Spectroscopy a Convenient, Accurate Means of Cancer Diagnosis
NOV 13, 2020
Mid-IR Spectroscopy a Convenient, Accurate Means of Cancer Diagnosis
Last Sunday, November 8, was the International Day of Radiology (IDoR 2020), an event celebrated by radiologists, techno ...
Loading Comments...