APR 02, 2020 11:57 AM PDT

Improved management of nitrate pollution

Researchers have finally succeeded in improving the mechanisms available for the degradation of nitrate pollution. Scientists at the Center for Sustainable Resource Science in Japan and the Korean Basic Science Institute (KBSI) have synthesized a catalyst that efficiently transforms nitrate into nitrite without requiring high temperature or acidity. Their results are published in Angewandte Chemie International Edition.

Run-off from agriculture leaves excess nitrates in the environment, and yet there are limited mechanisms for dealing with this pollution. Photo: Pixabay

The team of researchers, led by Ryuhei Nakamura of the RIKEN Center for Sustainable Resource Science (CSRS), mimicked the enzyme used by microorganisms to catalyze nitrate into nitrite, called nitrate reductase. They were able to chemically synthesizing oxo-containing molybdenum sulfide and show that it is capable of catalyzing nitrate into nitrite in an aqueous electrolyte at neutral pH.

"We hypothesized," says first author Yamei Li, who is currently at the Tokyo Institute of Technology, "that the oxo-molybdenum sulfide catalysts may have active sites similar to those in enzymes. To test this hypothesis, we attempted to track how chemical species on the catalyst surface change using molecular spectroscopy."

Due to the excessive use of nitrogen fertilizers in response to booming global population, nitrate pollution in drinking water and algal blooms resulting from the eutrophication of lakes and marshes have become an ever-growing problem around the world. While there are various measures in place to reduce agricultural run-off and clean wastewater, the growing over-presence of nitrate ions in the environment require more effective management. This concern led the researchers towards their goal of developing catalysts that can cheaply perform the transformation of nitrates to nitrites at ambient temperatures.

Using electron paramagnetic resonance spectroscopy (EPR) and Raman spectroscopy, the researchers were able to explain why oxo-containing molybdenum sulfide works: one of the intermediate products, pentavalent molybdenum with oxygen ligands, serves as an active species that quickens the reaction because the active species has a structure similar to that of natural nitrate reductase.

"This result shows that nitrate ions can be detoxified in a mild environment without depending on rare metal catalysts. We hope that this will make possible the development of new technology for synthesizing ammonia from waste liquid," concludes Nakamura.

Sources: Angewandte Chemie International Edition, Eureka Alert

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
JUN 16, 2020
Clinical & Molecular DX
Don't Sweat It! New Tech Monitors Health With a Single Drop of Sweat.
JUN 16, 2020
Don't Sweat It! New Tech Monitors Health With a Single Drop of Sweat.
Looking for ways to cool off and beat the summer heat? Think twice before wiping that sweat off your brow. Every drop of ...
JUL 01, 2020
Chemistry & Physics
New water quality test glows green upon detecting toxic levels of contamination
JUL 01, 2020
New water quality test glows green upon detecting toxic levels of contamination
  Measuring water quality has just been made easier with a new device developed by researchers at Northwestern Univ ...
JUL 02, 2020
Chemistry & Physics
Scientists develop artificial SEI for more efficient batteries
JUL 02, 2020
Scientists develop artificial SEI for more efficient batteries
New research published in Nanoscale Advances details the development of a coating for batteries composed of organic comp ...
JUN 27, 2020
Chemistry & Physics
Enhancing the efficiency of lithium metal batteries with a new electrolyte
JUN 27, 2020
Enhancing the efficiency of lithium metal batteries with a new electrolyte
A study published recently in Nature Energy reports the development of an electrolyte that enhances the efficiency of li ...
AUG 07, 2020
Chemistry & Physics
Excipients: "Inactive" Drug Components Could Be Functioning Beyond Their Scopes
AUG 07, 2020
Excipients: "Inactive" Drug Components Could Be Functioning Beyond Their Scopes
Excipients are chemical additives to medications. They are incorporated into all kinds of pharmaceuticals to fulfil ...
SEP 10, 2020
Chemistry & Physics
Reprogramming Virus to Build Better Li-ion Batteries
SEP 10, 2020
Reprogramming Virus to Build Better Li-ion Batteries
There's no doubt that the word "virus" is currently on everyone's mind. However, there's a lot mor ...
Loading Comments...