AUG 03, 2020 1:06 PM PDT

How to make fool's gold magnetic

Research published in Science Advances reports the conversion of fool’s gold into a useful magnetic material. Fool’s gold is actually iron sulfide, a non-magnetic, inexpensive and abundant material that is a byproduct of petroleum production. However, through an electric transformation of iron sulfide, University of Minnesota engineers have made iron sulfide magnetic, thus opening the door for a process through which new magnetic materials could be developed.

Photo: Pixabay

"Most people knowledgeable in magnetism would probably say it was impossible to electrically transform a non-magnetic material into a magnetic one. When we looked a little deeper, however, we saw a potential route, and made it happen," said lead research Chris Leighton, who is a University of Minnesota Distinguished McKnight University Professor in the Department of Chemical Engineering and Materials Science.

The University of Minnesota team has been interested in iron sulfide for a time because of its potential in solar cells. "We really went back to the iron sulfide material to try to figure out the fundamental roadblocks to cheap, non-toxic solar cells," Leighton elaborated. He worked with Eray Aydil at New York University and Laura Gagliardi from the chemistry department at the University of Minnesota on this project.

"Meanwhile, my group was also working in the emerging field of magnetoionics where we try to use electrical voltages to control magnetic properties of materials for potential applications in magnetic data storage devices. At some point we realized we should be combining these two research directions, and it paid off."

Utilizing a technique called electrolyte gating, the researchers manipulated iron sulfide with a low voltage in an electrolyte solution to induce ferromagnetism. They were able to use this method to turn the material’s magnetism on and off.

"We were pretty surprised it worked," Leighton said. "By applying the voltage, we essentially pour electrons into the material. It turns out that if you get high enough concentrations of electrons, the material wants to spontaneously become ferromagnetic, which we were able to understand with theory. This has lots of potential. Having done it with iron sulfide, we guess we can do it with other materials as well."

The researcher plan to continue their investigations by attempting to replicate the process at higher temperatures and with other materials that.

Sources: Science Advances, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
OCT 28, 2020
Chemistry & Physics
Paleontologists use scanning electron microscopy to analyze dinosaur egg fossils
OCT 28, 2020
Paleontologists use scanning electron microscopy to analyze dinosaur egg fossils
Scientists report using scanning electron microscopy to examine the surfaces of dinosaur egg fossils in order to determi ...
NOV 20, 2020
Chemistry & Physics
The Passing of a Neutrino Hunting Pioneer
NOV 20, 2020
The Passing of a Neutrino Hunting Pioneer
Masatoshi Koshiba, a revered Japanese physicist known for his groundbreaking work on cosmic neutrino detection, passed a ...
NOV 18, 2020
Chemistry & Physics
"CASH" system optimizes materials development with machine learning
NOV 18, 2020
"CASH" system optimizes materials development with machine learning
New research published in APL Material from scientists at the Tokyo Institute of Technology reports on the development o ...
NOV 25, 2020
Chemistry & Physics
The physics behind the face mask
NOV 25, 2020
The physics behind the face mask
A study published in Physics of Fluids investigates the physics of face masks to better comprehend how we can effectivel ...
DEC 01, 2020
Chemistry & Physics
"Killer" electrons associated with the pulsating aurora
DEC 01, 2020
"Killer" electrons associated with the pulsating aurora
In a collaboration between scientists in Japan and the United States, a new study has been published in the journal  ...
JAN 23, 2021
Chemistry & Physics
Exploring ceramic omnidirectional bioprinting in cell-suspensions
JAN 23, 2021
Exploring ceramic omnidirectional bioprinting in cell-suspensions
A new technique known as ceramic omnidirectional bioprinting in cell-suspensions (COBICS) may allow surgeons of the futu ...
Loading Comments...