SEP 16, 2020 8:15 AM PDT

Sub-nanoparticle catalysts prove effective

Researchers at the Tokyo Institute of Technology have developed a technique to control the size and composition of sub-nanoparticles. Led by Dr. Takamasa Tsukamoto and Professor Kimihisa Yamamoto, the results detailing the macromolecular template, which they call a phenylazomethine dendrimer, are published in Angewandte Chemie International Edition.

Sub-nanoparticles (SNPs) are nanoparticles with a diameter of 1 nm or less. They are significantly more useful than nanoparticles because all of their atoms are exposed for reactions and they have a high semi-conductivity. Because of this, researchers are interested in using SNPs as catalysts for industrial reactions. Yet, until now, there has been a delay in making this a reality because conventional production methods for nanoparticles can’t be used on SNPs.  

In developing the phenylazomethine dendrimer, the researchers utilized the atom hybridization method (AHM) to control and design the size and composition of the SNPs. They also analyzed the chemical reactivity of alloy SNPs.

"We created monometallic, bimetallic, and trimetallic SNPs (containing one, combination of two, and combination of three metals respectively), all composed of coinage metal elements (copper, silver, and gold), and tested each to see how good of a catalyst each of them is," reports Dr. Tsukamoto. 

They determined that these SNPs were stable and more effective and had a higher catalytic performance than their corresponding nanoparticles. Of the SNPs they created, the trimetallic combination "Au4Ag8Cu16" demonstrated the highest turnover frequency. The key to this development is that these SNPs were created under mild conditions compared to conventional nanoparticles.

Photo: Pexels

Professor Yamamoto commented: "We demonstrate for the first time ever, that olefin hydroperoxygenation can be catalyzed under extremely mild conditions using metal particles in the quantum size range. The reactivity was significantly improved in the alloyed systems especially for the trimetallic combinations, which has not been studied previously."

The team is confident that their technique will be helpful in future innovations with SNPs, citing the belief that sub-nanomaterials can be derived from diverse elements and can address some of the energy crises facing our planet.

Sources: Angewandte Chemie International Edition, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
OCT 28, 2020
Cell & Molecular Biology
Mimicking Cells With a Microfluidic Chip
OCT 28, 2020
Mimicking Cells With a Microfluidic Chip
Cell culture models are one way for scientists to learn more about biology. But cells grow in large cultures that are of ...
NOV 02, 2020
Chemistry & Physics
Eliminating CO2 at room temperature
NOV 02, 2020
Eliminating CO2 at room temperature
A new chemical process developed by researchers at the National Institute of Standards and Technology (NIST) demonstrate ...
NOV 06, 2020
Chemistry & Physics
The Most Powerful X-ray Source On Earth
NOV 06, 2020
The Most Powerful X-ray Source On Earth
Located inside the Sandia National Laboratories in Albuquerque, New Mexico, the Z Pulsed Power Facility (or Z Machine) i ...
DEC 03, 2020
Chemistry & Physics
This microscope can see through an intact skull
DEC 03, 2020
This microscope can see through an intact skull
New research from a team at the Center for Molecular Spectroscopy and Dynamics within the Institute of Basic Science (IB ...
JAN 08, 2021
Chemistry & Physics
Detecting tumors from the shear waves emitted by song
JAN 08, 2021
Detecting tumors from the shear waves emitted by song
Will a singing test be the way the doctors of the future monitor thyroid health? According to a collaboration of researc ...
JAN 27, 2021
Chemistry & Physics
Air purifiers may increase the spread of viral transmission, not hinder it
JAN 27, 2021
Air purifiers may increase the spread of viral transmission, not hinder it
A recent study published in Physics of Fluids, from AIP Publishing, sheds new light on the pros and cons of air pur ...
Loading Comments...