SEP 16, 2020 8:15 AM PDT

Sub-nanoparticle catalysts prove effective

Researchers at the Tokyo Institute of Technology have developed a technique to control the size and composition of sub-nanoparticles. Led by Dr. Takamasa Tsukamoto and Professor Kimihisa Yamamoto, the results detailing the macromolecular template, which they call a phenylazomethine dendrimer, are published in Angewandte Chemie International Edition.

Sub-nanoparticles (SNPs) are nanoparticles with a diameter of 1 nm or less. They are significantly more useful than nanoparticles because all of their atoms are exposed for reactions and they have a high semi-conductivity. Because of this, researchers are interested in using SNPs as catalysts for industrial reactions. Yet, until now, there has been a delay in making this a reality because conventional production methods for nanoparticles can’t be used on SNPs.  

In developing the phenylazomethine dendrimer, the researchers utilized the atom hybridization method (AHM) to control and design the size and composition of the SNPs. They also analyzed the chemical reactivity of alloy SNPs.

"We created monometallic, bimetallic, and trimetallic SNPs (containing one, combination of two, and combination of three metals respectively), all composed of coinage metal elements (copper, silver, and gold), and tested each to see how good of a catalyst each of them is," reports Dr. Tsukamoto. 

They determined that these SNPs were stable and more effective and had a higher catalytic performance than their corresponding nanoparticles. Of the SNPs they created, the trimetallic combination "Au4Ag8Cu16" demonstrated the highest turnover frequency. The key to this development is that these SNPs were created under mild conditions compared to conventional nanoparticles.

Photo: Pexels

Professor Yamamoto commented: "We demonstrate for the first time ever, that olefin hydroperoxygenation can be catalyzed under extremely mild conditions using metal particles in the quantum size range. The reactivity was significantly improved in the alloyed systems especially for the trimetallic combinations, which has not been studied previously."

The team is confident that their technique will be helpful in future innovations with SNPs, citing the belief that sub-nanomaterials can be derived from diverse elements and can address some of the energy crises facing our planet.

Sources: Angewandte Chemie International Edition, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
MAY 28, 2021
Chemistry & Physics
Are transparent solar cells in our near future?
MAY 28, 2021
Are transparent solar cells in our near future?
Scientists are searching for alternative technologies to replace traditional silicon solar cells and the limits of their ...
JUN 06, 2021
Chemistry & Physics
Designing a glue as strong as mussels
JUN 06, 2021
Designing a glue as strong as mussels
A recent study published in the journal Advanced Science describes a novel type of glue inspired by the strong hold ...
JUN 22, 2021
Space & Astronomy
An Unusual Galaxy Without Dark Matter
JUN 22, 2021
An Unusual Galaxy Without Dark Matter
Even though we still cannot detect dark matter, many researchers are confident that exists. It seems to act as a kind of ...
JUN 19, 2021
Chemistry & Physics
How can we reduce our dependency on lithium and cobalt for EV batteries?
JUN 19, 2021
How can we reduce our dependency on lithium and cobalt for EV batteries?
A new study published in Joule reports advances in lithium batteries from the University of Houston and Rice University ...
JUL 09, 2021
Space & Astronomy
Cluster of Free-Floating Planets Captured by Kepler Telescope
JUL 09, 2021
Cluster of Free-Floating Planets Captured by Kepler Telescope
The Kepler Space Telescope has captured evidence of mysterious free-floating planets, or planets that are alone in deep ...
JUL 23, 2021
Earth & The Environment
It's Very Likely That Clouds Will Make Global Warming Worse
JUL 23, 2021
It's Very Likely That Clouds Will Make Global Warming Worse
For many years scientists have been investigating the role of clouds in global warming. Using satellite measurements to ...
Loading Comments...