SEP 16, 2020 8:15 AM PDT

Sub-nanoparticle catalysts prove effective

Researchers at the Tokyo Institute of Technology have developed a technique to control the size and composition of sub-nanoparticles. Led by Dr. Takamasa Tsukamoto and Professor Kimihisa Yamamoto, the results detailing the macromolecular template, which they call a phenylazomethine dendrimer, are published in Angewandte Chemie International Edition.

Sub-nanoparticles (SNPs) are nanoparticles with a diameter of 1 nm or less. They are significantly more useful than nanoparticles because all of their atoms are exposed for reactions and they have a high semi-conductivity. Because of this, researchers are interested in using SNPs as catalysts for industrial reactions. Yet, until now, there has been a delay in making this a reality because conventional production methods for nanoparticles can’t be used on SNPs.  

In developing the phenylazomethine dendrimer, the researchers utilized the atom hybridization method (AHM) to control and design the size and composition of the SNPs. They also analyzed the chemical reactivity of alloy SNPs.

"We created monometallic, bimetallic, and trimetallic SNPs (containing one, combination of two, and combination of three metals respectively), all composed of coinage metal elements (copper, silver, and gold), and tested each to see how good of a catalyst each of them is," reports Dr. Tsukamoto. 

They determined that these SNPs were stable and more effective and had a higher catalytic performance than their corresponding nanoparticles. Of the SNPs they created, the trimetallic combination "Au4Ag8Cu16" demonstrated the highest turnover frequency. The key to this development is that these SNPs were created under mild conditions compared to conventional nanoparticles.

Photo: Pexels

Professor Yamamoto commented: "We demonstrate for the first time ever, that olefin hydroperoxygenation can be catalyzed under extremely mild conditions using metal particles in the quantum size range. The reactivity was significantly improved in the alloyed systems especially for the trimetallic combinations, which has not been studied previously."

The team is confident that their technique will be helpful in future innovations with SNPs, citing the belief that sub-nanomaterials can be derived from diverse elements and can address some of the energy crises facing our planet.

Sources: Angewandte Chemie International Edition, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
AUG 04, 2020
Chemistry & Physics
They're Serious: Ig Nobel-Inspired Researchers Re-examined Penguin's Bodily Fluid Dynamics
AUG 04, 2020
They're Serious: Ig Nobel-Inspired Researchers Re-examined Penguin's Bodily Fluid Dynamics
If this year has been nothing but stress and you are looking for a venue for some "serious" laughter, this is ...
AUG 12, 2020
Chemistry & Physics
Molecular additives enhace solar-to-electrical power conversion efficiency
AUG 12, 2020
Molecular additives enhace solar-to-electrical power conversion efficiency
A new study featured in Soft Matter has demonstrated an innovative technique for enhancing solar cell performance and st ...
AUG 12, 2020
Chemistry & Physics
Ammonium Nitrate the Nitrogen-Rich Compound Behind the Mega Blast in Beirut
AUG 12, 2020
Ammonium Nitrate the Nitrogen-Rich Compound Behind the Mega Blast in Beirut
Last Tuesday, twin explosions ruptured the sky of Beirut, the Lebanese capital city. The second blast's shockwave wa ...
AUG 17, 2020
Chemistry & Physics
First ever documented liquid-to-liquid transition in sulfur
AUG 17, 2020
First ever documented liquid-to-liquid transition in sulfur
New research published in Nature documents evidence for a liquid-to-liquid transition in sulfur, a first-order phase tra ...
OCT 18, 2020
Chemistry & Physics
Monitoring ocean chemistry over the last forty years
OCT 18, 2020
Monitoring ocean chemistry over the last forty years
A study published recently in Nature Communications Earth & Environment contemplates the changing chemistry and ...
OCT 07, 2020
Neuroscience
Biocompatible Gel Restores Sciatic Nerve Function in Rats
OCT 07, 2020
Biocompatible Gel Restores Sciatic Nerve Function in Rats
Video: Explains poly(lactic-co-glycolic acid), a hydrogel biopolymer that is a similar concept to the new hydrogel built ...
Loading Comments...