OCT 27, 2020 1:02 PM PDT

Why doping polycrystalline solar cells improves efficiency

While there is certainly a fair amount of warranted pessimism about the future of our planet, there is also warranted optimism – at least that’s what Professor Dong-Seon Lee of the Gwangju Institute of Science and Technology in Korea believes. Lee researches solar cells and has a vision of the future that some might call revolutionary:

"When eco-friendly, inexpensive, versatile, and efficient solar cells are developed, all thermal and nuclear power plants will disappear, and solar cells installed over the ocean or in outer space will power our world."

Lee’s recent work on this topic is published in a new paper in Advanced Science. In it, Lee’s team provides insight on why the now-common practice of doping polycrystalline solar cells actually works – information that until now has been an enigma.

Doping refers to the distortion of a crystal structure by introducing an impurity. In the case of polycrystalline solar cells, this can be done by melting together crystals called CZTSSe with earth-abundant and eco-friendly alkali metals, like sodium and potassium. This process makes solar cells not only more efficient in light to electricity conversion but also allows them to be cheap and small.  

In this study, Lee’s team looked at the composition and electric charge transport properties of CZTSSe cells doped with layers of sodium fluoride of different thicknesses. They found that a thickness of 25 nanometers proved to produce the highest light-to-electricity conversion efficiency, a concept termed fill factor.

“When doping is optimized, the fabricated device shows sufficient built‐in potential and selects a better carrier transport path by the high potential difference between the intragrains and the grain boundaries,” write the authors. “On the other hand, when doping is excessive, the device shows low contact potential difference and fill factor and selects a worse carrier transport path even though the built‐in potential becomes stronger. The fabricated CZTSSe solar cell on a flexible metal foil optimized with a 25 nm thick NaF doping layer achieves a fill factor of 62.63%, thereby clearly showing the enhancing effect of Na doping.”

Photo: Pixabay

Expanding the understanding of polycrystalline solar cells will help to create the vision that Lee sees as possible. "We have developed flexible and eco-friendly solar cells that will be useful in many ways in our real lives, from building-integrated photovoltaics and solar panel roofs, to flexible electronic devices," Professor Lee concludes.

Sources: Advanced Science, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
JUN 01, 2021
Chemistry & Physics
"Candy" models allow the visually impaired to visualize complex 3D images with tongue
JUN 01, 2021
"Candy" models allow the visually impaired to visualize complex 3D images with tongue
New research hopes to improve accessibility to science for people who are blind or visually impaired. Approximately 36 m ...
JUN 11, 2021
Chemistry & Physics
Cutting-edge wearables: the next generation of electronics
JUN 11, 2021
Cutting-edge wearables: the next generation of electronics
New research published in Applied Physics Reviews from AIP Publishing considers the development of flexible supercapacit ...
JUN 19, 2021
Chemistry & Physics
How can we reduce our dependency on lithium and cobalt for EV batteries?
JUN 19, 2021
How can we reduce our dependency on lithium and cobalt for EV batteries?
A new study published in Joule reports advances in lithium batteries from the University of Houston and Rice University ...
JUN 20, 2021
Chemistry & Physics
Illuminating the dark side of e-waste recycling
JUN 20, 2021
Illuminating the dark side of e-waste recycling
A new study published in the journal Resources, Conservation, and Recycling evaluates the shortcomings of electronics re ...
AUG 17, 2021
Chemistry & Physics
Physicists Transform Pure Energy into Matter and Antimatter
AUG 17, 2021
Physicists Transform Pure Energy into Matter and Antimatter
A new study published in Physical Review Letters presents evidence for the creation of matter and antimatter from energy ...
SEP 14, 2021
Space & Astronomy
NASA is Planning to Shoot a Spacecraft Into an Asteroid
SEP 14, 2021
NASA is Planning to Shoot a Spacecraft Into an Asteroid
NASA can detect asteroids, so there's been plenty of speculation about what might happen if we discover an asteroid ...
Loading Comments...