JAN 10, 2021 8:20 AM PST

Documenting biological magnetoreception in living cells

New research published recently in the Proceedings of the National Academy of Sciences from a team of scientists from Japan reports observations of the first-ever documented biological magnetoreception. Biological magnetoreception refers to some organisms’ ability to detect a magnetic field. This extra sense lets certain organisms perceive direction, altitude or location, and thus is a crucial tool for animal navigation, especially during migrations.

"The joyous thing about this research is to see that the relationship between the spins of two individual electrons can have a major effect on biology," said Professor Jonathan Woodward from the University of Tokyo, who collaborated with doctoral student Noboru Ikeya.

Before this investigation, science had yet to measure a change in chemical reactions inside a living cell due to influence from a magnetic field. In order to observe biological magnetoreception, the University of Tokyo team looked at how an artificial magnetic field would influence the autofluorescence of HeLa cells, or human cervical cancer cells that are useful for research purposes because of their light-sensing flavin molecules.

Enlisting many control measurements to make sure that the only change in the cells' environment was the presence or absence of the magnetic field, the team shone blue light lasers on the cells and measured the changes in their fluorescence. They found that every time the cells were exposed to the magnetic field, their fluorescence dimmed by roughly 3.5%.

"We've not modified or added anything to these cells. We think we have extremely strong evidence that we've observed a purely quantum mechanical process affecting chemical activity at the cellular level," Woodward exclaimed.

This finding could help us understand the mechanisms certain organisms use for migration. Photo: Pexels

Notedly, the magnetic field that the researchers used in the experiment were 25 millitesla, or approximately 500 times stronger than the magnetic field of the Earth. Nevertheless, Woodward explains that even a weak magnetic field like that of the Earth could influence organisms by way of what is called the low field effect.

The researchers will continue their queries by looking at the way that the effect impacts other kinds of cells. That being said, their findings are exciting because they represent the first time that we have observed the direct link between magnetic field effects on chemical reactions in living cells.

Sources: PNAS, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
DEC 03, 2020
Chemistry & Physics
This microscope can see through an intact skull
DEC 03, 2020
This microscope can see through an intact skull
New research from a team at the Center for Molecular Spectroscopy and Dynamics within the Institute of Basic Science (IB ...
DEC 14, 2020
Chemistry & Physics
Using AI to classify data from solar images
DEC 14, 2020
Using AI to classify data from solar images
New research describes how scientists from the University of Graz, the Kanzelhöhe Solar Observatory (Austria), and ...
JAN 29, 2021
Chemistry & Physics
Photosynthetic bio-ink becomes six times its original strength
JAN 29, 2021
Photosynthetic bio-ink becomes six times its original strength
Research conducted by scientists from USC Viterbi School of Engineering Civil and Environmental Engineering reimagines b ...
FEB 04, 2021
Cell & Molecular Biology
Protein Biophysics Revealed in Spiderweb/Dewdrop Interactions
FEB 04, 2021
Protein Biophysics Revealed in Spiderweb/Dewdrop Interactions
Just like oil and water are both liquids but they don't coalesce into one, it's thought that cells use phase separation ...
FEB 22, 2021
Chemistry & Physics
New hydrogels mimic biological tissue but are even stronger
FEB 22, 2021
New hydrogels mimic biological tissue but are even stronger
In a new study recently published in Nature, researchers from UCLA describe a process they have developed to produc ...
APR 08, 2021
Space & Astronomy
The Stardust That Made Us & Our Planet
APR 08, 2021
The Stardust That Made Us & Our Planet
You may know that the human body is made up of elements that almost all originated in stars, and many of those elements ...
Loading Comments...