JAN 25, 2021 9:14 AM PST

Optimizing laser beams in complex, irregular environments

New research published in the acclaimed journal Nature Physics reports that researchers from Utrecht University in the Netherlands and TU Wien in Vienna, Austria, have shown it is possible to optimize the information gathered from a laser beam in complex, disordered environments. While lasers are useful for measuring an object's position or velocity in non-complex environments with direct, unobstructed views of said object, in complex or irregular environments like those in the human body, the usefulness of laser beams is limited because of light scattering and refraction. Now the researchers present a new technology that can modify a laser beam to deliver precise information even in irregular environments.

Watch the video below to learn more about how lasers work.

The new technology has the potential to improve the effectiveness of lasers in a variety of different fields of application, including microbiology and the production of computer chips. Stefan Rotter from TU Wien explains: "You always want to achieve the best possible measurement accuracy - that's a central element of all natural sciences. Let's think, for example, of the huge LIGO facility, which is being used to detect gravitational waves: There, you send laser beams onto a mirror, and changes in the distance between the laser and the mirror are measured with extreme precision." In this scenario, all disturbances are carefully avoided, but, points out Rotter, such sterility isn’t always possible.

"Let's imagine a panel of glass that is not perfectly transparent, but rough and unpolished like a bathroom window," says Allard Mosk from Utrecht University. "Light can pass through, but not in a straight line. The light waves are altered and scattered, so we can't accurately see an object on the other side of the window with the naked eye." Mosk alludes that this is how we can think of a laser beam entering biological tissue, full of little irregularities that disturb a straight laser beam and scatter its light. In this situation, getting the desired information with a straight laser beam is extremely challenging.

But – thought the researchers – what if it were possible to predict the ways in which a complicated environment would impact a laser beam and purposely create a complicated wave pattern (instead of a straight wave pattern) that could twist and turn around the environmental disturbances as still arrive to the desired location?

"To achieve this, you don't even need to know exactly what the disturbances are," elaborates first author Dorian Bouchet. "It's enough to first send a set of trial waves through the system to study how they are changed by the system. You can show that for various measurements there are certain waves that deliver a maximum of information as, e.g., on the spatial coordinates at which a certain object is located."

The experiments that the physicists carried out showed that their mathematical procedure is in fact capable of calculating optimal waves of this sort. "We see that the precision of our method is only limited by the so-called quantum noise," notes Allard Mosk. "This noise results from the fact that light consists of photons - nothing can be done about that. But within the limits of what quantum physics allows us to do for a coherent laser beam, we can actually calculate the optimal waves to measure different things. Not only the position but also the movement or the direction of rotation of objects."

Sources: Nature Physics, Eureka Alert

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
OCT 22, 2020
Chemistry & Physics
NASA Looks to Nuclear Fusion for Powering Deep Space Missions
OCT 22, 2020
NASA Looks to Nuclear Fusion for Powering Deep Space Missions
Nuclear fusion is the frontier of energy research, and NASA has a plan to bring this state-of-the-art power source to th ...
OCT 21, 2020
Technology
Can House Paint Revolutionize Technology?
OCT 21, 2020
Can House Paint Revolutionize Technology?
Can house paint revolutionize technology? Apparently, yes! Researchers discovered that titanium oxide, a component of pa ...
DEC 03, 2020
Chemistry & Physics
3-D Printed, Realistic Heart Model for Training Future Physicians
DEC 03, 2020
3-D Printed, Realistic Heart Model for Training Future Physicians
Building a realistic tissue model is critical for training young physicians and surgeons, and yet challenging due to the ...
DEC 03, 2020
Neuroscience
Scientists Invent Noninvasive Microscope to Observe Neurons
DEC 03, 2020
Scientists Invent Noninvasive Microscope to Observe Neurons
To obtain high-resolution images of the brain, researchers usually need to reduce the thickness of the skull or cut into ...
DEC 15, 2020
Chemistry & Physics
Over-the-air Charging - How Close Are We to Realize Tesla's Vision?
DEC 15, 2020
Over-the-air Charging - How Close Are We to Realize Tesla's Vision?
When inventor and visionary Nikola Tesla erected his Wardenclyffe Tower, a 186-feet tall and 68-feet wide monstrous towe ...
JAN 16, 2021
Chemistry & Physics
Rare earth ions act as qubits for quantum computer
JAN 16, 2021
Rare earth ions act as qubits for quantum computer
New research published recently in the scientific journal Optics Communications highlights the discovery of rare ea ...
Loading Comments...