OCT 05, 2016 05:02 PM PDT

Are Airbag Helmets the Way of the Future?

Air bags are the safety standard in cars to cushion a direct impact from a collision. But what about air bags for bike helmets to protect from similar impact situations? A bioengineering group at Stanford is working on making the air bag helmet a reality. Designed to rest around one’s neck and inflate prior to a collision or fall, the air bag is thought to better protect the head from a direct impact and lessen the chances for concussion.
Helmet drop test (Stanford News Video)
But how would this work? Air bags in a car are triggered for inflation based on the impact force. A helmet would need to be able to predict an impact in order to inflate in time for a fall. David Camarillo, an assistant professor of bioengineering, and his team combined high-rate micro-electrical-mechanical systems sensors and high energy density batteries with their expandable helmet design to create the ultimate head protection. The helmet can sense a potential collision and expands to safeguard the head.

Traditional helmets are made of expanded polystyrene foam and have been designed to prevent blunt trauma, such as skull fracture or severe head injury. Camarillo notes that it is a false expectation that the helmets also provide good protection against concussion.

Concussion research has come a long way in recent years. New thinking provides data that concussions are not due to a linear blunt impact on the brain that traditional helmets protect against, but actually are caused by a twisting motion where neurons are being distressingly stretched out of place.

“There are many theories as to why concussion happens, but the predominant one is that, as your head rotates very quickly, the soft tissue within your brain contorts and, essentially, what you get is a stretching of the axons, which are the wiring of the brain,” Camarillo said.

By designing a helmet with a softer liner and larger size, the team hypothesized that they would observe a substantial decrease in acceleration levels of the brain during collision allowing for a reduced risk of brain injury. The study, published in the Annals of Biomedical Engineering, demonstrated how the team investigated the difference of impact dynamics in current EPS helmets and airbag helmets. Using the standard dummy drop test experiments taken from commercial helmet testing guidelines, they found that peak acceleration with the airbag helmets achieve up to an 8-fold reduction in concussion risk compared to standard EPS helmets.
 

One issue that the team is working to improve on is the air pressure fluctuation within the airbag helmets. The study tested only pre-inflated airbag helmets with maximum air pressure. Under those conditions, the helmets performed well above traditional helmets in testing.

However, are these conditions realistic? Without maximum air pressure in the helmet, the air bag could completely contract causing the head to hit the ground with significantly more force than a traditional helmet. The team’s next steps are to closely investigate the possible weaknesses of the airbag helmet and its potential to completely contract allowing no protection at all. Initial tests hint that this approach could be the next wave in successful head protection technology.

Camarillo and team plan to perform additional drop studies at greater heights to test the durability of the cushioning. They also will be doing more in-depth testing for specific concussion-related injury by testing for protection against rotational acceleration and force on the brain as well as reducing strain on brain tissue.

Sources: Stanford News, Springer
About the Author
  • I love all things science and am passionate about bringing science to the public through writing. With an M.S. in Genetics and experience in cancer research, marketing and technical writing, it is a pleasure to share the latest trends and findings in science on LabRoots.
You May Also Like
NOV 12, 2018
Plants & Animals
NOV 12, 2018
Steaks Aren't the Only Things We Get From Cows
It’s no secret that cows are routinely slaughtered for beef, but what if we told you that only about 60% of the cow gets harvested for food? Fret not...
NOV 16, 2018
Chemistry & Physics
NOV 16, 2018
Liquid Fuel That Stores Solar Energy
A solar panel is a great power generating system because it doesn't release greenhouse gas, but storing solar energy requires lots of high capacity lit...
NOV 27, 2018
Space & Astronomy
NOV 27, 2018
Here's What Makes Mars So Challenging to Land On
Humankind has sent spacecraft to a plethora of worlds in our solar system, including asteroids, comets, moons, and planets. Of all, Mars has consistently p...
DEC 17, 2018
Chemistry & Physics
DEC 17, 2018
Are We Any Closer to Harnessing Fusion to Generate Electricity?
Electricity is essential to our everyday lives, but the way we generate electricity with the burning of fossil fuels isn’t particularly suitable for...
JAN 20, 2019
Space & Astronomy
JAN 20, 2019
Astronomers Use Saturn's Rings to Precisely Calculate the Planet's Rate of Rotation
NASA’s Cassini spacecraft executed a suicidal death plunge into Saturn’s atmosphere in 2017, but years’ worth of scientific data amassed...
FEB 03, 2019
Space & Astronomy
FEB 03, 2019
Explaining the Strange Orbit of 'The Goblin' with... a Ninth Planet?
Astronomers have tried to prove the existence of a ninth planet in our solar system for the better part of the last decade. This hypothetical planet has be...
Loading Comments...