NOV 24, 2016 9:35 AM PST

Controlling Chronic Inflammation with UV Light to Quell Disease Symptoms

WRITTEN BY: Jennifer Ellis
Chronic inflammation can be a contributory factor in many leading causes of death, including diabetes, heart disease, and cancer. It can also be a primary cause of several severe diseases such as asthma, multiple sclerosis, rheumatoid arthritis, colitis and Crohn's disease. Researchers at Cornell University have created a chemical tool that can control inflammation in targeted tissues, which could change the process for treating chronic inflammation without harming healthy tissue.
Examples of diseases in which chronic inflammation plays a primary role (Dr. Judi Moore)
The group led by Pamela Chang, assistant professor of microbiology and immunology, and Bibudha Parasar, a graduate student in Chang's lab, worked to find a way to inhibit certain enzyme pathways that are known to activate the inflammation reaction using UV light. The study, published in Chemical Science, could also open up new approaches to learning more about the immune system and how we can modulate other inflammation pathways.
 
"We are pushing the forefront of developing new technologies to control inflammation and the immune system, with the ultimate goal of being able to study these biological pathways and perhaps develop therapies for inflammatory diseases," Chang said.

The immune system is controlled by inflammatory molecules produced by immune cells such as macrophages and dendritic cells. These molecules in turn are regulated by enzymes such as histone deacetylases (HDACs) that activate and deactivate related genes to promote inflammation. The team identified inhibitors of the HDACs that suppress the inflammatory response and created a probe to specifically activate these inhibitors, but only in the presence of UV light.
 
An HDAC inhibitor molecule was synthesized with an attached photolabile protecting group, essentially a chemical release mechanism that is cleaved upon UV light activation which then releases and activates the attached molecule. The HDAC inhibitor can then enter an activated macrophage cell and inhibit inflammatory processes to reduce inflammation.
The HDAC inhibition reaction (Parasar and Chang, 2016)
The UV light activation allows the chemical probe to be targeted to specific tissues. This is important because HDACs are used as regulators for other pathways in addition to inflammation regulation. If all HDACs were inhibited, there would be damage to tissues caused by inhibition of unrelated pathways in cells. By developing a system where UV light is used to target only specific areas of chronic inflammation, inflammatory diseases can be treated effectively without harming healthy tissue.

"If you turned off all the HDACs in the body, you would probably be hitting a lot of pathways that you didn't want to turn off," said Chang. "We can control when and where we turn off the HDACs using light. The idea is that you can actually target the tissue that has chronic inflammation and regulate it by selectively inhibiting HDACs in the tissue that's affected."

Sources: Royal Society of Chemistry, phys.org, MedicalXpress
About the Author
  • I love all things science and am passionate about bringing science to the public through writing. With an M.S. in Genetics and experience in cancer research, marketing and technical writing, it is a pleasure to share the latest trends and findings in science on LabRoots.
You May Also Like
MAR 01, 2020
Space & Astronomy
MAR 01, 2020
Astronomers Say it Was the Biggest Explosion Detected Since the Big Bang
When you’re an astronomer, you come to grips with the fact that the job involves a lot of waiting and watching as ...
MAR 31, 2020
Chemistry & Physics
MAR 31, 2020
Pandemic in Silico: How Maths Modeling Helps Our COVID Fight
The phrase "flattening the curve" is used frequently these days by epidemiologists to describe various measure ...
APR 02, 2020
Chemistry & Physics
APR 02, 2020
New development for sustainable energy storage
Sustainable energy storage is a hot topic recently and scientists around the world are working to develop better mechani ...
APR 28, 2020
Space & Astronomy
APR 28, 2020
NASA's Swift Telescope Measured the Water Loss of This Interstellar Comet
When the interstellar comet 2l/Borisov made its first appearance in our solar system, astronomers were quick to turn the ...
APR 29, 2020
Chemistry & Physics
APR 29, 2020
New method hospitals can use to produce hydrogen peroxide
In a collaboration between the University of California San Diego, Columbia University, Brookhaven National Laboratory, ...
MAY 19, 2020
Space & Astronomy
MAY 19, 2020
The Science Behind Eclipses
A particularly convenient coincidence exists between the relative sizes of the Sun and the Moon, and their distance from ...
Loading Comments...