JAN 17, 2017 4:37 PM PST

Creating the Tightest Knot Ever

WRITTEN BY: Jennifer Ellis

Tying knots is part of most people’s everyday lives. Tying shoelaces, braiding hair, knitting, or docking a ship all involve a combination of a series of small knots to create a larger structure. The same act can be done at the molecular level as well. Though instead of creating clothes or a way to hold something together, molecular knots have different applications in building nanostructures and molecular netting.

The original knot created at the molecular level was accomplished by Jean-Pierre Sauvage, one of the three chemists who won the Nobel Prize in Chemistry last year for work on creating parts for molecular nanomachines. Since then, only a handful of other knots have been successfully created. This doesn’t make sense to mathematicians, who have come up with billions of possible permutations for chemists to build upon.

X-ray crystal structure of a 192-atom-loop molecular 8(19) knot featuring iron ions (purple), oxygen atoms (red), nitrogen atoms (dark blue), carbon atoms (metallic grey, with building blocks in light blue) and a single chloride ion (green) at the center of the structure. Image credit: Robert W. McGregor (www.mcgregorfineart.com).

A group of chemists from the University of Manchester led by Professor David Leigh have now taken molecular knots to the next level, creating the tightest knot ever.  Sauvage’s original knot was a three-fold knot, the simplest one possible, looking like a three-leaf clover. The team’s new creation appears to have four loops and has eight crossings.

Using iron ions to coordinate the folding and crossing of molecular strands and structural constraints on ligands to determine the braiding connections, the knot can tie itself in a test tube. Dubbed ‘molecular weaving’, the process could create nanostructures with new properties.

The tightness of a knot is determined by two main characteristics: the length of the rope and how many crossings it has. A shorter rope with a greater number of crossings leads to a more complex knot. In this case, the team was able to use a very short “rope” that was only 192 atoms long, which is 500 times smaller than the size of a red blood cell. And they were able to create a two-step assembly of eight nonalternating crossings in a closed loop. Published in Science, this is now the tightest knot ever.

So what can we do with these tiny knots? It turns out the possibilities are wide reaching. Nanostructures and nanomachines are already in the works using simpler knots. Molecular weaving of nanomaterials would also benefit from these tighter structures to build various characteristics into the materials such as strength and elasticity.

“Tying knots is a similar process to weaving so the techniques being developed to tie knots in molecules should also be applicable to the weaving of molecular strands. For example, bullet-proof vests and body armour are made of kevlar, a plastic that consists of rigid molecular rods aligned in a parallel structure - however, interweaving polymer strands have the potential to create much tougher, lighter and more flexible materials in the same way that weaving threads does in our everyday world,” explains Professor Leigh. “Some polymers, such as spider silk, can be twice as strong as steel so braiding polymer strands may lead to new generations of light, super-strong and flexible materials for fabrication and construction.”

Sources: NPR, University of Manchester, Science

About the Author
  • I love all things science and am passionate about bringing science to the public through writing. With an M.S. in Genetics and experience in cancer research, marketing and technical writing, it is a pleasure to share the latest trends and findings in science on LabRoots.
You May Also Like
APR 19, 2020
Drug Discovery & Development
Large Molecule Database Can Aid in Drug Discovery
APR 19, 2020
Large Molecule Database Can Aid in Drug Discovery
Scientists have recently developed a large molecule database that can help drug development. The database called ‘ ...
MAY 12, 2020
Space & Astronomy
Here's What Would Happen if You Fired a Gun in Outer Space
MAY 12, 2020
Here's What Would Happen if You Fired a Gun in Outer Space
Many of the world’s greatest science fiction films depict massive battles in outer space between starships and eve ...
MAY 23, 2020
Chemistry & Physics
Improving the understanding of GPCRs functioning
MAY 23, 2020
Improving the understanding of GPCRs functioning
New research reported in Current Opinion in Structural Biology combines structural and spectroscopic approaches to garne ...
JUN 09, 2020
Chemistry & Physics
Can Time Flow Backward? Very Unlikely According to a Recent Black Hole Simulation
JUN 09, 2020
Can Time Flow Backward? Very Unlikely According to a Recent Black Hole Simulation
The idea of time in physics is often associated with the second law of thermodynamics, which states that the entropy of ...
JUN 22, 2020
Chemistry & Physics
More solar power produced during COVID-19 pandemic
JUN 22, 2020
More solar power produced during COVID-19 pandemic
Research published in the journal Joule highlights the silver lining of the COVID-19 pandemic: reductions in air polluti ...
JUN 24, 2020
Chemistry & Physics
How to Enable Computers to Solve Increasingly Complex Problems? Make Them "Think" Like a Metal
JUN 24, 2020
How to Enable Computers to Solve Increasingly Complex Problems? Make Them "Think" Like a Metal
In metal works, the term annealing refers to a treatment with heat that increases the elasticity of a metal material. Si ...
Loading Comments...