JAN 17, 2017 4:37 PM PST

Creating the Tightest Knot Ever

WRITTEN BY: Jennifer Ellis

Tying knots is part of most people’s everyday lives. Tying shoelaces, braiding hair, knitting, or docking a ship all involve a combination of a series of small knots to create a larger structure. The same act can be done at the molecular level as well. Though instead of creating clothes or a way to hold something together, molecular knots have different applications in building nanostructures and molecular netting.

The original knot created at the molecular level was accomplished by Jean-Pierre Sauvage, one of the three chemists who won the Nobel Prize in Chemistry last year for work on creating parts for molecular nanomachines. Since then, only a handful of other knots have been successfully created. This doesn’t make sense to mathematicians, who have come up with billions of possible permutations for chemists to build upon.

X-ray crystal structure of a 192-atom-loop molecular 8(19) knot featuring iron ions (purple), oxygen atoms (red), nitrogen atoms (dark blue), carbon atoms (metallic grey, with building blocks in light blue) and a single chloride ion (green) at the center of the structure. Image credit: Robert W. McGregor (www.mcgregorfineart.com).

A group of chemists from the University of Manchester led by Professor David Leigh have now taken molecular knots to the next level, creating the tightest knot ever.  Sauvage’s original knot was a three-fold knot, the simplest one possible, looking like a three-leaf clover. The team’s new creation appears to have four loops and has eight crossings.

Using iron ions to coordinate the folding and crossing of molecular strands and structural constraints on ligands to determine the braiding connections, the knot can tie itself in a test tube. Dubbed ‘molecular weaving’, the process could create nanostructures with new properties.

The tightness of a knot is determined by two main characteristics: the length of the rope and how many crossings it has. A shorter rope with a greater number of crossings leads to a more complex knot. In this case, the team was able to use a very short “rope” that was only 192 atoms long, which is 500 times smaller than the size of a red blood cell. And they were able to create a two-step assembly of eight nonalternating crossings in a closed loop. Published in Science, this is now the tightest knot ever.

So what can we do with these tiny knots? It turns out the possibilities are wide reaching. Nanostructures and nanomachines are already in the works using simpler knots. Molecular weaving of nanomaterials would also benefit from these tighter structures to build various characteristics into the materials such as strength and elasticity.

“Tying knots is a similar process to weaving so the techniques being developed to tie knots in molecules should also be applicable to the weaving of molecular strands. For example, bullet-proof vests and body armour are made of kevlar, a plastic that consists of rigid molecular rods aligned in a parallel structure - however, interweaving polymer strands have the potential to create much tougher, lighter and more flexible materials in the same way that weaving threads does in our everyday world,” explains Professor Leigh. “Some polymers, such as spider silk, can be twice as strong as steel so braiding polymer strands may lead to new generations of light, super-strong and flexible materials for fabrication and construction.”

Sources: NPR, University of Manchester, Science

About the Author
  • I love all things science and am passionate about bringing science to the public through writing. With an M.S. in Genetics and experience in cancer research, marketing and technical writing, it is a pleasure to share the latest trends and findings in science on LabRoots.
You May Also Like
OCT 16, 2019
Technology
OCT 16, 2019
Paper-based technology can sense iron levels in fortified foods
In many low-income nations, mass food fortification programs have grown to address issues surrounding poor nutrition address nutrient in their populations....
NOV 01, 2019
Chemistry & Physics
NOV 01, 2019
Cancer Therapy Agents Inspired by Solar Technology
In a recent study, a group of biomedical researchers at Michigan State University developed a new platform for tweaking light-activated dyes that can enable diagnostic imaging, image-guided s...
NOV 11, 2019
Chemistry & Physics
NOV 11, 2019
Scientists Bolstered Water-based Hydrogen Production with a 10-Dollar Magnet
Hydrogen is dubbed the clean energy of the future because its consumption leads to no carbon emission but only water. But things are not always what they s...
DEC 14, 2019
Chemistry & Physics
DEC 14, 2019
Molecules of the Year 2019
The Chemical & Engineering News, an outlet by American Chemical Society (ACS), polled its audience for the most interesting molecules that were reporte...
JAN 20, 2020
Microbiology
JAN 20, 2020
Microbes Create a More Sustainable Building Material
Concrete is the second most widely consumed resource on the planet (after water), and it has a massive carbon footprint....
JAN 30, 2020
Chemistry & Physics
JAN 30, 2020
New Infrared Spectroscopic Method Grants Scientists Unprecedented "Seeing" Power
Infrared spectroscopy is a popular scientific method to identify and study molecules based on their absorption of infrared light. Scientists at the Max Pla...
Loading Comments...