JUN 06, 2017 06:34 PM PDT

Big Buzz from Tiny Motors

Molecular motors are molecule-sized machines that are capable of transforming an energy source (chemical, light, heat, etc) into kinetic motion, and the human body has millions of them. Take the ATP synthase for example, it works like a miniature rotary motor. Powered by the proton gradient across the inner mitochondrial membrane, these protein-based biological motors turn ADP into ATP - the energy currency.

The idea of a synthetic motor was first proposed by the nanotechnology pioneer Richard Feynman. This concept was largely intriguing because it can provide kinetic energy and mobility to miniature human-made machines. A prototype model driven by chemical reactions was first developed by a research team led by T. Ross Kelly from Boston College. Their design consists of a three-bladed triptycene rotor and a helicene. The motor is capable of rotating 120 degree and each rotation involves 5 chemical reactions. Dutch chemist Ben L. Feringa and his group tried a different approach. They created a light-driven motor that is made of a bis-helicene molecule with an alkene axial.  The motor finishes a 360-degree rotation with a 4-step photoisomerization-dictated process. The principle of Feringa’s design was later incorporated into the development of an early generation nanocar.  For his exceptional contribution to molecular motor, Ben L. Feringa received the Nobel Prize in Chemistry in 2016.

Structure of Nanocar with C60 fullerene wheels. Credit: wikipedia/James Tour Research group

Related reading : nanocar and nanocar race

Synthetic molecular motor-rotor machine driven by light. A, motor axial. B, rotor axial. Credit: the Feringa Research group

Recently the team led by the Nobel laureate created a more sophisticated motor design - a molecular motor coupled to a rotor. This motor-rotor combo has three main body components: a fluorenyl group (the stationary base), an indany group (the motor), and a naphthyl group (the rotor). How does this new complex yet small machine work? Try picturing a horizontally rotary ride in the amusement park: it has a main motor axial through which the primary rotation happens, and a rotor axial that allows secondary rotation. What is marvelous about this design is that the motor and rotor are perfectly synchronized – they always face each other at the same side during movement. When both parts finish one round of rotation, and they generate motion to propel the body forward on a single direction.

To explain the idea behind this design, Ben Feringa said: “This is fundamental research about how to control motion at the molecular level and how then to use it to synchronize motion and amplify motion.” The synchronized rotation can only be achieved by coupling motion and preventing free rotation of the rotor, as he pointed out. For the future, Feringa’s group is expecting to create machinery that can amplify the molecular machines’ motion to larger movements or transmit motion over longer distances.

Source: Chemical & Engineering News

About the Author
  • With years of experience in biomedical R & D, Daniel is also very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles.
You May Also Like
DEC 04, 2018
Space & Astronomy
DEC 04, 2018
NASA's OSIRIS-REx Probe Arrives Safely at Asteroid Bennu
Following a two-year journey through our solar system, NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (...
DEC 12, 2018
Space & Astronomy
DEC 12, 2018
Bennu is a Moist and Rocky World, OSIRIS-REx Finds
After a two-year journey through space, NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) mis...
DEC 13, 2018
Chemistry & Physics
DEC 13, 2018
Biochemical Antifreezes: How Do They Work?
How do fish survive in the Arctic ocean where the temperature is under zero degree Celsius most of the year? They rely on a class of polypeptides called th...
DEC 19, 2018
Space & Astronomy
DEC 19, 2018
This is One of the Coldest Known Places in the Universe
Discerning the coldest place in the universe is no easy task; after all, we don’t have an ultra-long thermometer that we can merely extend out to the...
DEC 30, 2018
Space & Astronomy
DEC 30, 2018
Are Some Super-Earth Exoplanets Rich in Rubies and Sapphires?
Astronomers are always peeking through the lenses of their fancy space telescopes to learn more about the universe around us. One thing that captivates the...
JAN 17, 2019
Cell & Molecular Biology
JAN 17, 2019
Researchers Engineer Artificial Cell Constructs That Send Signals
Scientists are getting closer to engineering synthetic tissues that mimic natural organisms....
Loading Comments...