JUL 21, 2017 06:00 AM PDT

This Spongy Graphene Aerogel Can Be In Your Future Wearable Electronics

The year was 2010, when graphene, a term that was only known to the scientific community, became a household word. Thanks to Nobel Laureates Andre Geim and Konstantin Novoselov, the world has become aware of this extraordinary material. At its core, graphene is a sheet of carbon atoms organized in the form of a hexagonal lattice. It is the basic structural unit that makes up graphite, charcoal, carbon nanotubes and buckyballs (C60). Graphene has many unusual properties: it is a hundred times stronger than steel, capable of self-repair when exposed to other carbon-based molecules, and an efficient conductor of heat and electricity.

Graphene under a scanning probe microscope. Credit: Wikipedia

In the early years, the production of graphene involved the use of humble adhesive tape, which extracts a 2-dimensional layer out of graphite. Nowadays, scientists make graphene with a variety of advanced techniques like sonication dispersing, diamond wedge slicing and hydrothermal self-assembly. The formation of graphene is no longer limited to the 2-dimensional sheet. Structures like bilayers, superlattices, nanoribbons, nanofibers, nanotubes, and nanocoils are generated to amplify and tweak the properties of this unusual material.

Inspired by Thalia dealbata, a water plant with sturdy and flexible stems, a team of Chinese researchers has come up with a novel design of graphene. What is so special about the plant is that its stem has massive fiber columns linked to each other with spring-like bridges. The researchers managed to replicate this porous structure in graphene. A delicately-controlled freezing method transformed a suspension of graphene oxide into parallel sheets connected by elastic bridges. Freeze-drying and warming of the sheets resulted in a cube-shaped graphene aerogel as the final product. The material is not only highly flexible but also reasonably conductive considering its low density, making it a good fit for wearable sensors and electronics.

Microscopic images of an elastic graphene aerogel (left) and Thalia dealbata's stem section (right). Credit: ACS Nano

Curious about the potential of their aerogel-producing technique, the researchers are now considering making aerogels out of other materials like cellulose and polymer-silica composites following a similar method. “With well-designed biomimetic structures, those materials could find many uses, such as in filtration, sensing, and liquid adsorption,” said Hao Bai, the chemical engineer who led the study.

Source: Chemical & Engineering News

About the Author
  • With years of experience in biomedical R & D, Daniel is also very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles.
You May Also Like
NOV 12, 2018
Plants & Animals
NOV 12, 2018
Steaks Aren't the Only Things We Get From Cows
It’s no secret that cows are routinely slaughtered for beef, but what if we told you that only about 60% of the cow gets harvested for food? Fret not...
NOV 16, 2018
Chemistry & Physics
NOV 16, 2018
Liquid Fuel That Stores Solar Energy
A solar panel is a great power generating system because it doesn't release greenhouse gas, but storing solar energy requires lots of high capacity lit...
DEC 19, 2018
Chemistry & Physics
DEC 19, 2018
Novel Imaging Technique Enables Real-time Monitoring of Drug-induced Protein-protein Interaction
Protein-protein interactions (PPIs) are a common cellular phenomenon in which two or more protein molecules have close, specific physical contact that's driven by the electrostatic forces. PI...
DEC 26, 2018
Space & Astronomy
DEC 26, 2018
Are LIGO's Gravitational Wave Detections Real?
Albert Einstein first theorized about the existence of gravitational waves in 1916, and physicists have been on an endless scavenger hunt to observe them e...
JAN 25, 2019
Chemistry & Physics
JAN 25, 2019
Are Compostable Plastics Really a Green Substitute?
The current trend to replace non-composable plastics materials such as polyethylene (PE), polypropylene (PP), or polystyrene (PS), with biodegradable ones,...
JAN 30, 2019
Space & Astronomy
JAN 30, 2019
Are We Any Closer to Learning How Uranus Became So Tilted?
Every planet in the solar system sports distinct properties; however, Uranus seems to be the elephant in the room. It’s the only world in our stellar...
Loading Comments...