OCT 06, 2017 6:00 AM PDT

This Lasso-like Peptide is Nature's Tinniest Switch

The lasso peptide Benenodin-1. Credit: RCSB

The 2016 Nobel Prize in Chemistry honored three esteemed scientists in the field nanotechnology for their contribution of synthetic molecular machines. Molecular machines, the assemblies of molecular components that produce mechanical movements in response to specific stimuli, are common in nature. The most complex molecular machines are proteins found within cells. These include motor proteins, such as myosin, kinesin, dynein, and transmembrane ATPases. The structure and working mechanism of these proteins are far more sophisticated than any artificial molecular machine so far.

While exploring the DNAs of a soil proteobacterium known as Asticcacaulis benevestitus, a team of Princeton University researchers stumbled upon a lasso-shaped bacterium-derive peptide that alters its configuration when exposed to heat. It belongs to a family of peptides called the “lasso peptides”. They all have an N-terminal macrolactam macrocycle ring, through which a linear C-terminal tail is threaded. This unique threaded-loop structure earned them their name.

Thermal unthreading of the Lasso Peptides Astexin-2 and Astexin-3.

Credit: Allen et al., 2016/ACS Chemical Biology

Most lasso peptides undergo a conformational change when exposed to heat, eventually resulting in the tail slipping out of the ring and the peptide losing the “lasso” feature. But what is unique about benenodin-1, the peptide isolated from A. benevestitus, is that even though the peptide changed configuration, it never becomes unthreaded.

The team, led by A. James Link associate professor of chemical and biological engineering at Princeton, has long been searching for inspiration from nature to construct nanoscale molecular machines. Instead of using the purely synthetic components, they went after naturally existing peptides and proteins. "The discovery of this lasso peptide, which we named benenodin-1, demonstrates that we might look to biology as well as engineering for source material in developing molecular devices," said Link.

The structure of a rotaxane molecule. Credit: Wikipedia

Commenting on the uniqueness of benenodin-1 as a lasso peptide, Link admitted that the ability to change shape without unthreading is intriguing. Since both conformations, before and after heat exposure, maintain the rotaxane structure, it is the first example of switchable, mechanically interlocked molecule found in nature. (Rotaxane, a mechanically interlocked molecule with ring-and-rod architecture, is an early generation molecular machine developed by Nobel Laureate Sir J. Fraser Stoddart's. Held together by its mechanical bonds, the lasso peptides are structurally resembling rotaxanes.)

About the direction of the next step research, the Princeton team is attempting to put the switching property of benenodin-1 to test in practical applications, such as binding metal pollutants to help with environmental cleanup.

Source: Phys.org/JACS

 

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
OCT 10, 2019
Chemistry & Physics
OCT 10, 2019
2019 Nobel Prize in Chemistry: an Electrifying Win for Li-ion Battery Pioneers
Light-weight and capable of storing a substantial amount of electricty, lithium-ion (Li-ion) batteries have transformed many aspects of our moder...
OCT 30, 2019
Drug Discovery & Development
OCT 30, 2019
Advancing Nanocontainers for Drug Delivery
Nanocontainers work by delivering drugs to a localized region in the body, many chemotherapeutics work in that matter. The high specificity of this drug de...
NOV 07, 2019
Chemistry & Physics
NOV 07, 2019
Electrifying Breakthrough: New Tech Adds 200 Miles to EVs with only 10-Min Charging
One of the most noticeable drawbacks of electric vehicles (EVs) is their long charging time. That's why the U.S. Department of Energy has set a goal to...
DEC 01, 2019
Space & Astronomy
DEC 01, 2019
Jupiter's Great Red Spot May Not Be Dying After All
Most people recognize Jupiter as the largest known planet in our solar system, but there’s another eccentric quality about the planet that helps it s...
DEC 12, 2019
Chemistry & Physics
DEC 12, 2019
Self-learning, Light-responsive Robot Inspired by Pavlov's Dog
Russian physiologist Ivan Pavlov famously trained the canines in his experiments to salivate in response to the sound of a metronome, which was a showcase...
DEC 31, 2019
Space & Astronomy
DEC 31, 2019
Why Does This Star Dim Unpredictably?
KIC 8462852, also known as Tabby’s Star or the infamous ‘alien megastructure star,’ is peculiar because the star’s light seems to d...
Loading Comments...