NOV 01, 2017 06:00 AM PDT

The Newly Discovered Gamma Rays are Super Lights

An international team of physicists has produced high-intensity gamma beams that have the energy a billion times higher than photons in visible light. These powerful photons significantly exceed all known limits of lights and can pave the way towards new fundamental discovery in physics.

Trapped particles (green) resulted from gamma laser converts the laser energy (surfaces in red, orange and yellow) into cascades of super-high-energy photons (pink). Credit: Arkady Gonoskov

Scientists have been contemplated the construction of a high energy gamma-ray laser device, also known as the graser. This hypothetically powerful device would be powered by nuclear transitions from a nuclear isomer and could produce coherent high energy gamma rays.

In normal cases, if you shoot a laser at an object, all the photon particles scatter upon contact. But if the laser light has the right parameters and is intense enough, the photons are instead trapped. The cloud of trapped particles efficiently converts the laser energy into cascades of high energy photons and produces a plasma of electrons and positrons.

According to a report published in the journal Physical Review X, the discovery was the result of collaboration between the Chalmers University of Technology in Sweden, Institute of Applied Physics and Lobachevsky University in Russia, and the University of Plymouth in the UK. The construction of a gamma-ray laser involves both basic science and engineering technology. Therefore, the research team has to be interdisciplinary, including experts in the fields of quantum mechanics, nuclear and optical spectroscopy, chemistry, solid-state physics, and metallurgy.

To be able to produce super light source, the researcher needed to tackle the known problems in generating high-intensity gamma beams – the cascade process radiation reaction and rapid electron-positron plasma production, both of which hinder the production of high energy photons.

To overcome these restrictions, they came up with a new source concept, which is based on a controlled interplay between the cascade and anomalous radiative trapping. With the help of specially designed advanced numerical models, they brought their concept into reality by only using a laser power close to 7 PW (petawatt, or 1012 W). By ramping up the laser power to 40 PW, their device generated 109 photons with GeV (gigaelectronvolt, or 109 electronvolts) energies. Their gamma beam achieved a peak brilliance that was unmatched by any beams on record.

The discovery is highly encouraging since many future large-scale laser facilities that are currently under development. "When we exceed the limit of what is currently possible, we can see deeper into the basic elements of nature. We can dive into the deepest part of the atomic nuclei," commented the lead author Arkady Gonoskov, a physicist at the Chalmers University of Technology. 

"Our concept is already part of the experimental program proposed for one such facility: Exawatt Center for Extreme Light Studies in Russia. We still don't know where these studies will lead us, but we know that there are yet things to be discovered within nuclear physics, for example, new sources of energy. With fundamental studies, you can aim at something and end up discovering something completely different – which is more interesting and important," added Arkady Gonoskov.

SwissFEL – a new large-scale laser facility. Credit: Paul Scherrer Institute

Source: phys.org

About the Author
  • With years of experience in biomedical R & D, Daniel is also very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles.
You May Also Like
NOV 12, 2018
Plants & Animals
NOV 12, 2018
Newly-Discovered Tea Plant Naturally Exhibits Little or No Caffeine
Tea is perhaps one of nature’s purest flavored drinks, and it can be brewed from not much more than some hot water and lightly-processed tea plant le...
NOV 22, 2018
Chemistry & Physics
NOV 22, 2018
Why Are Dandelion Seeds So Good at "Flying"?
The seeds of dandelions, pesky and irritating as they are, bear an extraordinary aerodynamic property that allows them to be carried far by the wind. In co...
DEC 18, 2018
Space & Astronomy
DEC 18, 2018
New Horizons Spacecraft 'Clear of Hazards' As it Approaches Ultima Thule
The Kuiper Belt is a vastly-unexplored region of the solar system filled with Kuiper Belt Objects (KBOs), and NASA expects to learn more about these object...
DEC 26, 2018
Space & Astronomy
DEC 26, 2018
Are LIGO's Gravitational Wave Detections Real?
Albert Einstein first theorized about the existence of gravitational waves in 1916, and physicists have been on an endless scavenger hunt to observe them e...
DEC 30, 2018
Space & Astronomy
DEC 30, 2018
Are Some Super-Earth Exoplanets Rich in Rubies and Sapphires?
Astronomers are always peeking through the lenses of their fancy space telescopes to learn more about the universe around us. One thing that captivates the...
JAN 21, 2019
Space & Astronomy
JAN 21, 2019
Saturn's Rings Are Still Very Young, Study Confirms
Saturn’s planetary rings have been receiving a lot of attention from astronomers as of late, not just because they’re astonishingly beautiful,...
Loading Comments...