NOV 17, 2017 5:06 PM PST

L to H mode transition: the key mechanism to fusion success

WRITTEN BY: Daniel Duan

Fusion experiment: MAST Plasma. Credit: CulhamFusionEnergy

Francois Ryter from Germany’s Max Planck Institute for Plasma Physics has won the IAEA’s 2017 Nuclear Fusion Journal Prize for experimental work elucidating a mechanism that can trigger a fusion plasma to a state that allows the fusion device to operate under high performance.

To produce energy from fusion, scientists must control the temperature, density and lifespan of the plasma fuel. Since all deuterium/tritium fuelled fusion takes place at 150 million degrees Celsius, the two variables that can be controlled to produce fusion are plasma density and lifespan.

At one end of the spectrum is low density, long lifespan fusion, in which the low density produces a relatively small number of energy producing collisions, but the plasma is long lived enough to achieve sufficient interactions to generate energy. Because the plasma is held stable (confined) for these long periods using magnetic fields, this technique is referred to as magnetic confinement fusion. The International Thermonuclear Experimental Reactor (ITER) uses this approach in its tokamak to generate fusion.

At the other end of the spectrum is very high-density plasma with very short lifespans, referred to as inertial confinement fusion. Using extremely rapid compression to heat a capsule of fuel to fusion temperatures, inertial confinement fusion takes place in a matter of nanoseconds and produces a short-lived burst of energy. The National Ignition Facility is the world’s largest inertial confinement fusion research facility.

Initiating and sustaining fusion takes a lot of energy and a key issue is being able to achieve the condition in which the fusion output power exceeds the auxiliary input power supplied from outside to sustain the reaction. The operation of ITER in so called high (H)-mode is critical to achieving this condition.

The award-winning paper has shown that, of the several factors that had been considered as potential triggers for the transition from the low (L)-mode confinement state of the device to H-mode, ion heat flux is key. This video shows the transition of the plasma from L-mode to H-mode inside a tokamak. The transition occurs at around 0:22.

The findings can improve the capability to predict the amount of input power required to operate the device in H-mode. Filling this kind of gap in the understanding of magnetic confinement plasma physics can facilitate the preparation for the operation of future fusion reactors for energy production.

Source: IAEA

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
AUG 11, 2020
Chemistry & Physics
"Surfer waves" documented in the upper atmosphere
AUG 11, 2020
"Surfer waves" documented in the upper atmosphere
Clemson University researcher Rafael Mesquita has collaborated with his peers to document what he is calling atmospheric ...
SEP 03, 2020
Chemistry & Physics
Nuclear Pioneers Joined Force to Fast-Track Clean Energy Tech
SEP 03, 2020
Nuclear Pioneers Joined Force to Fast-Track Clean Energy Tech
Last week, TerraPower, a Bill Gates-backed nuclear startup, announced its latest project - a collaboration with GE Hitac ...
SEP 11, 2020
Chemistry & Physics
Indigenous fermentation processes require complex chemical reactions
SEP 11, 2020
Indigenous fermentation processes require complex chemical reactions
A study published in the Nature journal Scientific Reports uncovers the complex chemical processes behind aborigina ...
OCT 07, 2020
Chemistry & Physics
Discovery of Phosphine on Venus - What Does It Mean?
OCT 07, 2020
Discovery of Phosphine on Venus - What Does It Mean?
A Nature Astronomy paper in September, titled "Phosphine gas in the cloud decks of Venus", has led t ...
OCT 12, 2020
Chemistry & Physics
Improving activated powdered carbon to prevent algal blooms in drinking water treatment
OCT 12, 2020
Improving activated powdered carbon to prevent algal blooms in drinking water treatment
In a study published in the journal Water Research, researchers from The Korea Institute of Science and Technology ...
NOV 14, 2020
Chemistry & Physics
STEVE, what is it?
NOV 14, 2020
STEVE, what is it?
STEVE is in the sky! STEVE, as is Strong Thermal Emission Velocity Enhancement, the purple and green streaks that have b ...
Loading Comments...