FEB 18, 2018 3:00 PM PST

Future skyscraper and cars may be made up of a wood stronger than steel

Wood is the most abundant, cheap, light and renewable material except being not suitable for building skyscraper and cars. The low density of wood makes it very suitable for building boats, ships since the dawn of human civilization but this low-density feature make wood not suitable where high strength and stiffness is desired. Scientists have tried many different physical and chemical methods to increase the density and strength of the wood without much success. However, this may change based on the recently published paper in Nature. In this paper, authors describe a method of chemical treatment combined with compression at high temperature that leads to a substantial increase in strength and stiffness of the wood.

A process for densifying wood

The method described in the paper starts with the chemical treatment of wood using sodium hydroxide, and sodium sulfite, a somewhat similar procedure is used to make paper from pulp. Chemical causes partial removal of lignin and hemicellulose from wood. Lignin is second most abundant biopolymer in nature which provides support to cell wall and protection from natural degradation. It is also one of the most difficult biodegradable natural material in the world. Hemicellulose is a branched short chain polymer, unlike cellulose which has more extended un-branched chain polymer. Chemical treatment is followed by compression of wood at high temperature (100°C), which leads to 3-fold increase in its density and collapse of pores in the wood structure. This modified wood is too dense to float into the water but has around 11 times more stiffness and strength than untreated wood. Previous attempts by other scientists to increase the strength of the wood were not that successful as only 3 to 4-fold strength could be achieved.

As evident by scanning electron microscopy, crushed cellulose tubes in the wood crumple and interlock upon undergoing chemical, heat and compression process mentioned in the paper. These cellulose tubes are like nanofibers, which collapse along their growth direction, giving unprecedented strength and stiffness to the wood. To test the strength of the modified wood, authors of the paper fired metal pellets at the speed equivalent of ballistic air gun. The modified wood of just 3 mm thickness could halt a metal pellet traveling around 30 meters per second. It is much slower than a bullet but comparable to the speed of a moving car at 60 miles per hour equivalent accident. In future, it is possible to make a car frame using this modified wood which is more natural, light-weight and cheaper to manufacture than steel.

Note: Credit NPG Press

Previous methods have also achieved an increase in density of the wood by a factor of three, but those processes involve only heat compaction. Most likely in the present work, the chemical process in combination with heat resulted in significant increase in strength and density. However, there are questions which remain to be answered, for example, feasibility for large-scale commercial production and susceptibilty to biodegradation due to removal of lignin during the chemical process. This modified wood may also swell considerably when exposed to water which is not a desirable property in an industrial material, but authors of the study downplay the swelling property.

The chemical and physical process used in this paper was found to be effective across the wood species. Authors of this paper expect this modified wood may replace most industrial metals and alloys, making it a cheaper, high-performance, lightweight substitute.

About the Author
  • Biological research scientist by profession with passion to write about science in general.
You May Also Like
NOV 14, 2019
Chemistry & Physics
NOV 14, 2019
Examining the Squirrelly Ones: Wearable MEG Scanner that Suits Pediatric Patients
In a recent study, a joint research team at the University of Nottingham, University of Oxford, and University College London successfully tested a ne...
NOV 22, 2019
Chemistry & Physics
NOV 22, 2019
Scientists Observed the Root Cause of Lithium Batteries Failures in Real Time
Lithium batteries have high energy storage capacity, but sometimes they have unexpected failures and can even cause a fire. A team of scientists at the Dep...
DEC 06, 2019
Chemistry & Physics
DEC 06, 2019
X17 - The Newest Exotic Particle May Hints a 5th Force Outside the Standard Model
About four years ago, a team of Hungarian physicists at the Institute for Nuclear Research noticed something strange in their experiments with beryllium-8,...
DEC 06, 2019
Technology
DEC 06, 2019
Molecular Eraser Increases Data Storage Efficiency
Researchers at the University of Alberta in Canada have explained a hydrogen-related novel method that takes advantage of a natural physical phenomenon to ...
JAN 01, 2020
Chemistry & Physics
JAN 01, 2020
Century-old Bretherton's Bubble Problem Solved
Some of the most common phenomena in life also hide puzzling mysteries.  When you pour water into a glass, many air bubbles would often appear. Becaus...
JAN 20, 2020
Cell & Molecular Biology
JAN 20, 2020
Using Modified Red Blood Cells As a Drug Delivery System
For a drug to be effective, it has to get to the right place to exert its impact....
Loading Comments...