FEB 17, 2018 4:36 PM PST

The Cellular Mechanisms Giving the Cuttlefish its Amazing Abilities

WRITTEN BY: Carmen Leitch

Cuttlefish are extraordinary animals; they can transform in myriad ways. They can change color and in doing so, communicate with one another. They can also alter the physical structure of their bodies, ejecting and holding 3D spikes out of their skin for over an hour, and suddenly retracting them and moving on. These camouflage tactics make it a chameleon of the sea. New work by researchers at the Marine Biological Laboratory (MBL), Woods Hole, and the University of Cambridge, U.K, reported in the new journal iScience from Cell Press, reveals the muscular and neural processes that give cuttlefish their defensive and communicative powers.

Cuttlefish / Credit: David Sim/Wikimedia Commons

"The biggest surprise for us was to see that these skin spikes, called papillae, can hold their shape in the extended position for more than an hour, without neural signals controlling them," noted Paloma Gonzalez-Bellido, former MBL scientists and a lecturer in neuroscience at the University of Cambridge. The investigators determined that the spikes hold because of unique musculature in the papillae, which is similar to a catch mechanism found in bivalves such as clams.

"The catch mechanism allows a bivalve to snap its shell shut and keep it shut, should a predator come along and try to nudge it open," explained corresponding author Trevor Wardill, former MBL scientist and a research fellow at the University of Cambridge. Cellular energy called ATP isn’t used in these shells; instead, smooth muscles that have a lock-and-key fit maintain tension until a signal, or neurotransmitter, releases them. Cuttlefish papillae may use a similar process, the investigators found.

The study started in 2013 with the work of Gonzalez-Bellido and Wardill in the laboratory of MBL Senior Scientist Roger Hanlon, an expert on cephalopod camouflage. 

Hanlon led the team to look for what controls the actions of papillae in the cuttlefish. They discovered a motor nerve that is wholly dedicated to controlling papillary and skin tension; it originates outside of the brain, in a peripheral nerve center - the stellate ganglion.

The team was surprised to find that the neural circuit regulating papillae action is remarkably similar to one found in squid that controls skin iridescence. Cuttlefish don't possess tunable iridescence, while squid lack papillae, so this work raises questions about the evolution of the neural circuit in various species.

"We hypothesize that the neural circuit for iridescence and for papillae control originates from a common ancestor to squid and cuttlefish, but we don't know that yet. This is for future work," Gonzalez-Bellido said.

"This research on neural control of flexible skin, combined with anatomical studies of the novel muscle groups that enable such shape-shifting skin, has applications for the development of new classes of soft materials that can be engineered for a wide array of uses in industry, society, and medicine," Hanlon concluded.


Sources: AAAS/Eurekalert! Via MBL, iScience

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAY 03, 2021
Cell & Molecular Biology
Are Retrons the Next CRISPR?
MAY 03, 2021
Are Retrons the Next CRISPR?
After being identified in the 1980s, it was thought that retrons were just an odd feature of some bacterial cells. But e ...
MAY 20, 2021
Genetics & Genomics
The rhAmpSeq™ CRISPR Analysis System for next-generation sequencing analysis of CRISPR edits
MAY 20, 2021
The rhAmpSeq™ CRISPR Analysis System for next-generation sequencing analysis of CRISPR edits
CRISPR genome editing generates double-stranded breaks (DSBs) in genomic DNA and is a targeted method by which to achiev ...
MAY 24, 2021
Cell & Molecular Biology
Animal Trial of Asthma Vaccine Has Positive Results
MAY 24, 2021
Animal Trial of Asthma Vaccine Has Positive Results
Asthma is thought to affect 340 million people. A type of asthma that happens when allergens like dust mites are inhaled ...
JUN 07, 2021
Cardiology
Researchers Find a Way to Improve Outcomes After a Heart Attack
JUN 07, 2021
Researchers Find a Way to Improve Outcomes After a Heart Attack
It's thought that in the United States, there is a heart attack once every 40 seconds, or that each year, about 80,0 ...
JUN 09, 2021
Cell & Molecular Biology
Mechanism Linking Neurodegeneration & Brain Injury May Open Treatment Options
JUN 09, 2021
Mechanism Linking Neurodegeneration & Brain Injury May Open Treatment Options
Studies have shown that there is a link between blows to the head and neurodegeneration. Repeated head trauma is associa ...
JUN 10, 2021
Cell & Molecular Biology
Does Lithium Prevent Colon Cancer?
JUN 10, 2021
Does Lithium Prevent Colon Cancer?
Researchers found that a drug used in the treatment of mental illness can promote the fitness of healthy gut stem cells, ...
Loading Comments...