MAR 16, 2018 10:00 AM PDT

This Sensitive Guidance System Allows Cars to See Around Corners

WRITTEN BY: Daniel Duan

 Illustration of the non-line-of-sight imaging system. Credit: Stanford Computational Imaging Lab

LIDAR, or light detection and ranging, is the technology that allows autonomous vehicles to detect an obstacle and avoid hazards in different driving environments. Researchers at Stanford University have come up with a more advanced imaging system than LIDAR: it can see objects around corners and hidden from view, using extremely sensitive laser detecting technology.

LIDAR system is currently the most common guidance systems in semi- and fully autonomous cars. It measures the distance to a target by illuminating the target with pulsed laser light and measuring the reflected pulses with a sensor. To keep navigation safe every second, most autonomous vehicles use rotating laser beams. The very first generations of automotive adaptive cruise control systems used only lidar sensors

In their design, Stanford researchers set a laser next to a highly sensitive photon detector that can measure a single particle of light. They pulsed invisible laser light to human eyes to the wall, which reflected those pulses onto objects around the corner. From the object, the reflected photons return to the detector through the same route.

Throughout this process, light particles are often scattered and cannot be detected using the conventional LIDAR system. (light particles are forced to deviate from its original trajectory due to non-uniformities in the medium.) As a matter of fact, scattered light is intentionally ignored by LIDAR for the accuracy of ranging. The Stanford crew applied an algorithm to untangles the light paths captured by the detector and enhanced the clarity of images so that the final view of the hidden objects were no longer out of focus and blurry.

Based on the environment, nature of the object, and the lighting condition, this scan can take from two minutes to an hour, which is nowhere to close to its intended application in the autonomous driving. The researchers think they could speed it up so that it is nearly instantaneous once the scan is complete.

"We believe the computation algorithm is already ready for LIDAR systems," said Matthew O'Toole, a postdoctoral scholar in the Stanford Computational Imaging Lab and co-lead author of the paper. "The key question is if the current hardware of LIDAR systems supports this type of imaging."

The researchers tested their design successfully out of their laboratory, but they worked only with indirect light. Their technology worked better with retroreflective objects, such as safety apparel or traffic signs. According to them car equipped with their laser and detector combo can detect things like road signs, safety vests or road markers, but probably not a person wearing non-reflective clothing.

"It sounds like magic, but the idea of non-line-of-sight imaging is feasible," said Gordon Wetzstein, assistant professor of electrical engineering and senior author of the paper describing this work, published this March in Nature.

Stanford researchers develop tech to reveal objects hidden around corners. Credit: Stanford

Source: Stanford University

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
FEB 09, 2021
Plants & Animals
Venus Flytraps Generate Magnetic Fields
FEB 09, 2021
Venus Flytraps Generate Magnetic Fields
The Venus flytrap (Dionaea muscipula) might be the most famous carnivorous plant; it can entice prey to land on its leaf ...
FEB 18, 2021
Chemistry & Physics
New insight on metal organic frameworks
FEB 18, 2021
New insight on metal organic frameworks
Researchers from KAUST have developed a metal organic framework (MOF) mimicking a class of inorganic porous materials ca ...
FEB 23, 2021
Chemistry & Physics
Converting methane in natural gas into liquid methanol at room temperature
FEB 23, 2021
Converting methane in natural gas into liquid methanol at room temperature
New research detailed in the journal Proceedings of the National Academy of Sciences describes a recent development ...
MAR 25, 2021
Clinical & Molecular DX
Police Speeding Radar Technology Used to Catch Antibiotic-Resistant Bacteria
MAR 25, 2021
Police Speeding Radar Technology Used to Catch Antibiotic-Resistant Bacteria
Doppler radars are used by cops to catch speeding drivers, in spacecraft navigation, and for forecasting the weather. No ...
JUN 10, 2021
Chemistry & Physics
Covalent organic frameworks provide the backbone for new aerogels
JUN 10, 2021
Covalent organic frameworks provide the backbone for new aerogels
New aerogels developed at Rice University are highly durable and capable of producing light. The aerogels are composed o ...
JUN 15, 2021
Genetics & Genomics
DNA May Soon Become a Digital Storage Device
JUN 15, 2021
DNA May Soon Become a Digital Storage Device
We live in an age of information and data, and more is being generated every day. It's estimated that there are about te ...
Loading Comments...