MAR 16, 2018 10:00 AM PDT

This Sensitive Guidance System Allows Cars to See Around Corners

WRITTEN BY: Daniel Duan

 Illustration of the non-line-of-sight imaging system. Credit: Stanford Computational Imaging Lab

LIDAR, or light detection and ranging, is the technology that allows autonomous vehicles to detect an obstacle and avoid hazards in different driving environments. Researchers at Stanford University have come up with a more advanced imaging system than LIDAR: it can see objects around corners and hidden from view, using extremely sensitive laser detecting technology.

LIDAR system is currently the most common guidance systems in semi- and fully autonomous cars. It measures the distance to a target by illuminating the target with pulsed laser light and measuring the reflected pulses with a sensor. To keep navigation safe every second, most autonomous vehicles use rotating laser beams. The very first generations of automotive adaptive cruise control systems used only lidar sensors

In their design, Stanford researchers set a laser next to a highly sensitive photon detector that can measure a single particle of light. They pulsed invisible laser light to human eyes to the wall, which reflected those pulses onto objects around the corner. From the object, the reflected photons return to the detector through the same route.

Throughout this process, light particles are often scattered and cannot be detected using the conventional LIDAR system. (light particles are forced to deviate from its original trajectory due to non-uniformities in the medium.) As a matter of fact, scattered light is intentionally ignored by LIDAR for the accuracy of ranging. The Stanford crew applied an algorithm to untangles the light paths captured by the detector and enhanced the clarity of images so that the final view of the hidden objects were no longer out of focus and blurry.

Based on the environment, nature of the object, and the lighting condition, this scan can take from two minutes to an hour, which is nowhere to close to its intended application in the autonomous driving. The researchers think they could speed it up so that it is nearly instantaneous once the scan is complete.

"We believe the computation algorithm is already ready for LIDAR systems," said Matthew O'Toole, a postdoctoral scholar in the Stanford Computational Imaging Lab and co-lead author of the paper. "The key question is if the current hardware of LIDAR systems supports this type of imaging."

The researchers tested their design successfully out of their laboratory, but they worked only with indirect light. Their technology worked better with retroreflective objects, such as safety apparel or traffic signs. According to them car equipped with their laser and detector combo can detect things like road signs, safety vests or road markers, but probably not a person wearing non-reflective clothing.

"It sounds like magic, but the idea of non-line-of-sight imaging is feasible," said Gordon Wetzstein, assistant professor of electrical engineering and senior author of the paper describing this work, published this March in Nature.

Stanford researchers develop tech to reveal objects hidden around corners. Credit: Stanford

Source: Stanford University

About the Author
  • Graduated with a bachelor degree in Pharmaceutical Science and a master degree in neuropharmacology, Daniel is a radiopharmaceutical and radiobiology expert based in Ottawa, Canada. With years of experience in biomedical R&D, Daniel is very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles. The recurring topics in his Chemistry & Physics trending news section include alternative energy, material science, theoretical physics, medical imaging, and green chemistry.
You May Also Like
AUG 22, 2020
Cell & Molecular Biology
A New Way to Describe Enzyme Kinetics
AUG 22, 2020
A New Way to Describe Enzyme Kinetics
The  Michaelis-Menten equation is classic, but it may not be sufficient to describe all enzymatic reactions, new wo ...
SEP 12, 2020
Chemistry & Physics
Colorimetric sensor detects presence of airborne pathogens
SEP 12, 2020
Colorimetric sensor detects presence of airborne pathogens
The development of a novel colorimetric sensor may bring some mental relief to your COVID-19 anxieties. According to the ...
SEP 25, 2020
Chemistry & Physics
Colossal Study for the Missing (Anti)Matter
SEP 25, 2020
Colossal Study for the Missing (Anti)Matter
Physicists believe that our observable universe exists in a mirrored configuration: any fundamental particle such as pro ...
OCT 14, 2020
Chemistry & Physics
The CRISPR Nobel Win from Different Angles
OCT 14, 2020
The CRISPR Nobel Win from Different Angles
CRISPR-Cas9 was THE buzz word in the world of science after the Nobel Chemistry Prize announcement last week. But depend ...
OCT 26, 2020
Chemistry & Physics
Fighting mesothelioma with gold nanotubes
OCT 26, 2020
Fighting mesothelioma with gold nanotubes
New research published in the journal Small details how gold nanotubes could be used to treat mesothelioma cancer. ...
NOV 02, 2020
Chemistry & Physics
Eliminating CO2 at room temperature
NOV 02, 2020
Eliminating CO2 at room temperature
A new chemical process developed by researchers at the National Institute of Standards and Technology (NIST) demonstrate ...
Loading Comments...