MAR 16, 2018 10:00 AM PDT

This Sensitive Guidance System Allows Cars to See Around Corners

 Illustration of the non-line-of-sight imaging system. Credit: Stanford Computational Imaging Lab

LIDAR, or light detection and ranging, is the technology that allows autonomous vehicles to detect an obstacle and avoid hazards in different driving environments. Researchers at Stanford University have come up with a more advanced imaging system than LIDAR: it can see objects around corners and hidden from view, using extremely sensitive laser detecting technology.

LIDAR system is currently the most common guidance systems in semi- and fully autonomous cars. It measures the distance to a target by illuminating the target with pulsed laser light and measuring the reflected pulses with a sensor. To keep navigation safe every second, most autonomous vehicles use rotating laser beams. The very first generations of automotive adaptive cruise control systems used only lidar sensors

In their design, Stanford researchers set a laser next to a highly sensitive photon detector that can measure a single particle of light. They pulsed invisible laser light to human eyes to the wall, which reflected those pulses onto objects around the corner. From the object, the reflected photons return to the detector through the same route.

Throughout this process, light particles are often scattered and cannot be detected using the conventional LIDAR system. (light particles are forced to deviate from its original trajectory due to non-uniformities in the medium.) As a matter of fact, scattered light is intentionally ignored by LIDAR for the accuracy of ranging. The Stanford crew applied an algorithm to untangles the light paths captured by the detector and enhanced the clarity of images so that the final view of the hidden objects were no longer out of focus and blurry.

Based on the environment, nature of the object, and the lighting condition, this scan can take from two minutes to an hour, which is nowhere to close to its intended application in the autonomous driving. The researchers think they could speed it up so that it is nearly instantaneous once the scan is complete.

"We believe the computation algorithm is already ready for LIDAR systems," said Matthew O'Toole, a postdoctoral scholar in the Stanford Computational Imaging Lab and co-lead author of the paper. "The key question is if the current hardware of LIDAR systems supports this type of imaging."

The researchers tested their design successfully out of their laboratory, but they worked only with indirect light. Their technology worked better with retroreflective objects, such as safety apparel or traffic signs. According to them car equipped with their laser and detector combo can detect things like road signs, safety vests or road markers, but probably not a person wearing non-reflective clothing.

"It sounds like magic, but the idea of non-line-of-sight imaging is feasible," said Gordon Wetzstein, assistant professor of electrical engineering and senior author of the paper describing this work, published this March in Nature.

Stanford researchers develop tech to reveal objects hidden around corners. Credit: Stanford

Source: Stanford University

About the Author
  • With years of experience in biomedical R & D, Daniel is also very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles.
You May Also Like
NOV 15, 2019
Chemistry & Physics
NOV 15, 2019
Self-deoxygenating Glassware: Sugar In, Oxygen Out
Oxygen is often the headache for chemists since its ubiquitous presence in our environment, and its ability oxidize sensitive compounds. A team of chemistr...
NOV 15, 2019
Chemistry & Physics
NOV 15, 2019
Quantum Darwinism: the Quirky Marriage of Two Distant Theories
Charles Darwin wouldn't have foreseen that one day his theory of natural selection would be borrowed to explain a puzzle that has bothered quantum phys...
NOV 15, 2019
Chemistry & Physics
NOV 15, 2019
Catastrophic Ancient Events Might Have Forever Changed Life-friendly Venus
There is plenty of evidence suggesting that Venus had a long history of being a habitable planet due to its abundance of water, plate tectonics, and amicab...
NOV 15, 2019
Cell & Molecular Biology
NOV 15, 2019
Light Therapy Developed for Treating Carbon Monoxide Poisoning
According to the Centers for Disease Control and Prevention, everyone is at risk from carbon monoxide (CO) poisoning....
NOV 15, 2019
Space & Astronomy
NOV 15, 2019
Here's What We Know So Far About Titan's Liquid Methane Oceans
Titan is perhaps one of the most captivating moons orbiting Saturn today; so much so that astronomers spent a lot of time studying it when the Cassini miss...
NOV 15, 2019
Chemistry & Physics
NOV 15, 2019
Neutron Star Merger Fused Atomic Nuclei, Spilled Out Heavy Element
It is safe to say that we live in a world of hydrogen and helium, the lightest elements in the periodic table. Born minutes after the Big Bang, the two mak...
Loading Comments...