APR 10, 2015 9:30 AM PDT

New Platform to Speed Discovery of Diagnostic, Therapeutic Agents

WRITTEN BY: Judy O'Rourke
Researchers at University of British Columbia have developed a new technology that enables rapid discovery of aptamers, one of the fastest growing classes of diagnostic and therapeutic agents.

Aptamers are short sequences of genetic material that fold into precise 3-D structures that bind target molecules and inhibit their biological functions.
Researchers have developed a new technology that enables rapid discovery of aptamers, a fast-growing class of diagnostic and therapeutic agents. Aptamers are short sequences of genetic material that fold into precise 3-D structures that bind target molecules and inhibit their biological functions.
In a recent Biotechnology and Bioengineering article, the investigators describe their aptamer selection platform, called high-fidelity systematic evolution of ligands by exponential enrichment (Hi-Fi SELEX), that accelerates and improves selection of DNA aptamers by ameliorating several limitations of current methods used for aptamer discovery.

The platform is engineered to greatly enhance the diversity of the starting collection of aptamers and the ability to rapidly enrich aptamers of therapeutic relevance, while also enabling their high-fidelity amplification and regeneration.

"As a technology development lab, we looked under-the-hood of available aptamer discovery platforms to determine precisely why they often do not yield functionally or therapeutically useful reagents," says senior author Charles Haynes, PhD.

"Through that effort we identified a number of issues that greatly limit performance and then worked to ameliorate those impediments using a combination of chemical modification methods and advanced enzymatic and processing strategies available in our labs," he says. "One of the great strengths of the resulting Hi-Fi SELEX platform is its ability to enhance the functional diversity of the library, which greatly improves the odds of discovering useful molecules."

[Source: Wiley-Blackwell]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
SEP 18, 2020
Chemistry & Physics
Molecule take images of itself with its own electrons
SEP 18, 2020
Molecule take images of itself with its own electrons
A new study published in Physical Review Letters highlights the development of an approach to observe time-dependent cha ...
SEP 26, 2020
Microbiology
Eliminating Biofilms with Green Tea-Derived Nanobots
SEP 26, 2020
Eliminating Biofilms with Green Tea-Derived Nanobots
Bacteria are everywhere in our world, and while the vast majority are harmless, some can cause dangerous infections. Bac ...
OCT 11, 2020
Chemistry & Physics
The mysteries of tiny surfing robots revealed
OCT 11, 2020
The mysteries of tiny surfing robots revealed
Mechanical engineers from Michigan Technological University have implemented the laws of surface tension and propulsion ...
OCT 22, 2020
Chemistry & Physics
Improving optical fiber data transmission with silica glass made under high pressures
OCT 22, 2020
Improving optical fiber data transmission with silica glass made under high pressures
Researchers collaborating from Hokkaido University and The Pennsylvania State University show that producing silica glas ...
OCT 23, 2020
Chemistry & Physics
Expanding on Einstein's theory of time dilation
OCT 23, 2020
Expanding on Einstein's theory of time dilation
Research published recently in the journal Nature Communications considers the influence of the quantum mechanics c ...
NOV 10, 2020
Chemistry & Physics
Are PBDEs in your house? Understanding the impacts of PBDE chemicals on the development of diabetes
NOV 10, 2020
Are PBDEs in your house? Understanding the impacts of PBDE chemicals on the development of diabetes
New research from UC Riverside conducted on animal models suggests that maternal exposure to common flame retardants cal ...
Loading Comments...