MAY 18, 2018 01:06 PM PDT

A 3D-Printed Mini-robot That Walks, Changes Shape, and Moves Objects

A 3D-printed hydrogel micro-device walking underwater (Daehoon Han/Rutgers University)

A team of material engineering research from Rutgers University-New Brunswick have 3D-printed soft gel-based mini-robots that not only walk and change shape when activated by electricity but also lifts small objects and moves them to a different location.

The core concept of this design is closely related to another work reported earlier by the same group this year. The team, led by Howon Lee, an assistant professor in the Department of Mechanical and Aerospace Engineering, developed a so-called 4D printing approach to constructing soft microscale device. It involves printing a three-dimensional object using a material called hydrogel. The printed object, due to its chemical makeup, can change shape over time as its ambient temperature changes.

A hydrogel is a colloidal network of polymer chains that are hydrophilic, easily dispersed in water. Once the polymer chains are cross-linked, the hydrogel can transform into a three-dimensional solid. As its name indicates, a hydrogel is highly water absorbent, and it can trap over 70% water (w/w) within its polymeric networks.

Due to their softness, flexibility and non-toxic nature, hydrogels are widely used to build scaffolds in tissue engineering. The hydrogel-based scaffolds emulate the natural microenvironment in the tissue to provide a suitable habitat for animal or human cells to grow and differentiate. Hydrogels are also used to make diapers, contact lenses, Jell-O and many other consumer products.

The ultimate goal of this research is to create miniature devices that can repair or form tissues like muscles and stomach liner, or to deliver diagnostic and therapeutic agents, or even to perform underwater inspections.

The advantage of the hydrogel-based devices, when compared to those constructed with hard materials, is cheaper to manufacture, easy to be miniaturized, designed and manipulated.

“Our 3D-printed smart gel has great potential in biomedical engineering because it resembles tissues in the human body that also contain lots of water and are very soft,” said Howon Lee in the interview with the Rutgers University news press. “It can be used for many different types of underwater devices that mimic aquatic life like the octopus.”

The study was published online on May 17, 208 in the journal ACS Applied Materials & Interfaces

Soft Robotic Manipulation and Locomotion with a 3D Printed Electroactive Hydrogel (Howon Lee/Rutgers University)

Source: Rutgers University

About the Author
  • With years of experience in biomedical R & D, Daniel is also very into writing. He is constantly fascinated by what's happening in the world of science. He hopes to capture the public's interest and promote scientific literacy with his trending news articles.
You May Also Like
NOV 01, 2018
Chemistry & Physics
NOV 01, 2018
Oil Absorbing Sponge Made from Wood
  It has been eight years since the crude oil spill in the Mexico Gulf, but the shadow of aquatic petroleum contamination has never been far away. To...
NOV 13, 2018
Cell & Molecular Biology
NOV 13, 2018
The Mechanism of a Cell-penetrating Peptide is Revealed
Cells have a barrier around them, which carefully controls what can move across it. That presents a challenge in pharmaceutical design....
NOV 13, 2018
Technology
NOV 13, 2018
Here's Why Hydrogen-Powered Cars Haven't Become Mainstream
The automobile industry today is still dominated by gasoline-powered vehicles, but electric cars like those from Tesla are gaining a lot of traction in the...
NOV 19, 2018
Plants & Animals
NOV 19, 2018
Scientists Discover Why Wombat Poop Takes a Cubic Shape
Defecation is a natural process that occurs in all living animals. The majority deposit fecal matter in the shape of rounded pellets, tubular strands, or s...
DEC 12, 2018
Plants & Animals
DEC 12, 2018
Dracula Ant's Bite Recognized as the Fastest Animal Movement on Record
Researchers are astounded after discovering what they claim to be the fastest-known animal movement on record. The findings, recently uncovered by research...
DEC 13, 2018
Chemistry & Physics
DEC 13, 2018
Biochemical Antifreezes: How Do They Work?
How do fish survive in the Arctic ocean where the temperature is under zero degree Celsius most of the year? They rely on a class of polypeptides called th...
Loading Comments...