DEC 18, 2019 8:32 AM PST

Germs don't stand a chance with new AI-powered diagnostic platform

WRITTEN BY: Tara Fernandez

We are steadily losing our edge in the war against infectious bacteria. A huge surge in antibiotic resistance is threatening healthcare and agricultural industries. Annually, 2.8 million people became infected with antibiotic-resistant microbes in the U.S. alone.

Since penicillin, our arsenal of antimicrobial drugs has grown, only to be swiftly overpowered by selective pressure and DNA mutations that give bacteria the upper hand.

In 2015, for instance, the antibiotic Ceftazidime-avibactam was approved by the Food and Drug Administration to treat hospital-acquired pneumonia and other multi-drug resistant infections. Featured as a reserve on the World Health Organization’s List of Essential Medicines, healthcare experts were hopeful that this medication would function as a last resort to resist superbugs.

Disastrously, in the same year of its release, the gut bacteria Klebsiella pneumoniae was found to have acquired resistance, making it a potentially deadly hospital-acquired infection threat.

On the verge of a global medical crisis, Niamh O’Hara, Co-founder and CEO of the biotech start-up, Biotia, saw an opportunity. Using next-generation DNA sequencing and software powered by artificial intelligence, O’Hara and colleagues at Weill Cornell Medicine and Cornell Tech have developed a robust digital platform for diagnosing and controlling microbial infections.

 

 

As O’Hara explains, the method most hospitals use to identify pathogens dates back to the 1800s: a process called culturing. Here, bacteria from patient samples are provided with nutrients and optimal growth conditions and allowed to multiply so that a microbiologist can establish their origin. This low-tech system is prone to failure and provides only limited information regarding how successfully the infection can be treated with antibiotics.

Biotia’s system, which recently raised $2.4 million in investment funding, genetically profiles bacteria with unparalleled precision and uses powerful computing systems to predict the likelihood of developing resistance. The artificial intelligence-driven software, known as Chelsea™, scans a genetic database of over 16,000 bacteria, viruses, fungi, and parasites, providing a complete report on exactly what the offending pathogen is and predicts its drug resistance.

Working closely with hospitals during this developmental phase, Biotia’s founders envision a future where healthcare providers can provide rapid, targeted, life-saving treatments and where hospital-acquired infections become a thing of the past.

 

Sources: Cornell Tech, Biotia.

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
APR 27, 2021
Clinical & Molecular DX
No Batteries: Health Sensor Harvests Biomechanical Energy
APR 27, 2021
No Batteries: Health Sensor Harvests Biomechanical Energy
An international team of researchers has developed a wearable health monitor that works without the need for batteries. ...
MAY 04, 2021
Clinical & Molecular DX
Vibrating Needles Make for Better Biopsies
MAY 04, 2021
Vibrating Needles Make for Better Biopsies
  To understand what’s going on with a patient, doctors may take a biopsy—a sample of tissue extracted ...
MAY 26, 2021
Chemistry & Physics
Turning bullfrog skin into human bones - as easy as....?
MAY 26, 2021
Turning bullfrog skin into human bones - as easy as....?
In an effort to support the growth of the circular economy, researchers from Nanyang Technological University, Singapore ...
MAY 31, 2021
Clinical & Molecular DX
Researchers Create the First Saliva Wiki
MAY 31, 2021
Researchers Create the First Saliva Wiki
A new digital platform, developed by researchers at the University at Buffalo, is answering the question: what’s o ...
JUN 29, 2021
Immunology
Speed Up qPCR Sample Preparation for SARS-CoV-2 Detection
JUN 29, 2021
Speed Up qPCR Sample Preparation for SARS-CoV-2 Detection
Amid the widespread outbreak of the COVID-19 caused by SARS-CoV-2, the development of test methods that can efficiently ...
JUL 22, 2021
Clinical & Molecular DX
"Smart Bandage" Keeps an Eye on Wounds
JUL 22, 2021
"Smart Bandage" Keeps an Eye on Wounds
Wounds are an ideal environment for microorganisms to thrive. Their presence can easily overwhelm immune defenses at the ...
Loading Comments...