DEC 17, 2019 7:52 PM PST

A New Tool for Assessing the Impact of Drugs on Single Cells

WRITTEN BY: Carmen Leitch

When scientists assess the impact of a treatment like a drug on cells, they generally rely on large populations of cells to find general trends. A new technique called sci-Plex has now created a way to find subtle effects on individual cells within a large population. Reporting in Science, the researchers that developed the tool suggested that this will be a better way to reveal side effects, show small variations in the way identical cells respond to drugs or explain how drug resistance arises.

"This technology actually occupies a niche between the two common kinds of assays," said a co-first author of the study Sanjay R. Srivatsan, an M.D./Ph.D. student in the Medical Scientist Training Program at the University of Washington School of Medicine in Seattle. "You can get a sort of global view of the cellular responses. We think it's going to be really powerful to categorize drugs, for example, and say what their mechanism is."

The sci-Plex method uses an improved technique for labeling the nuclei of cells along with gene activity profiling at the level of single cells while keeping costs low.

In this study, the research team applied sci-Plex to three different types of cancer cells that were exposed to 180 therapeutic molecules that are used for treating disorders including autoimmune disease, cancer, and HIV. Different cells were identified with small strands of DNA, called nuclear hashing, and allowed the researchers to identify which treatment each cell received. In a single experiment, gene expression was analyzed for 650,000 individual cells from 5,000 samples.

"The sci-Plex technique allows us to pool lots of genetically different cells and see what happens to many individual cells as they are perturbed in many different ways," said senior study author Cole Trapnell, UW School of Medicine associate professor of genome sciences. "We then collect all the data together and analyze it using modern tools from machine learning and data science to understand something about what each of those drugs does to the cells."

The scientists found big differences in the ways that cancer cells responded to compounds, and also saw patterns. In the case of one class of cancer drugs called HDAC inhibitors, the researchers saw changes in gene regulation and determined that these inhibitors, as was expected, stop cancer cells from growing by preventing them from accessing a source of energy. They were also able to see how different drug strengths impacted cells.

"It was really cool that we could use gene expression profiles to categorize the potency of drugs. With changes in dose over four orders of magnitude, we could see a smooth increase in the cellular response," Srivistan said,

This proof-of-concept work has suggested that thousands of samples can be assessed using sci-Plex to study regulation, catalysis, pathways and mechanisms.

"Some of this work could pertain to the treatment of disease, in helping medical researchers understand how certain drugs produce their effects, how the cell stage influences effectiveness, and why some medications work on some cells, but not on others," said Trapnell. "Physicians also give many people the same handful of drugs, and they work for some people and not for others. Potentially sci-Plex could help us better understand why that is."

This work may be useful in different studies, such as creating an atlas of how cells respond to drugs, or in precision medicine. "Ultimately when someone gets sick with cancer, we want to kill the whole tumor, all of the cells, not just some of the cells. So understanding why some individual cells respond one way to a drug and others respond differently is critical to designing therapies that will be completely effective," Trapnell explained.

"It's a very generalizable strategy," Srivatsan said. "It can be performed with reagents which any scientist can acquire and it can be used in many ways."


Sources: AAAS/Eurekalert! via University of Washington Health Sciences/UW Medicine, Science

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 05, 2021
Neuroscience
Could a Keto Diet Treat Alzheimer's Disease?
APR 05, 2021
Could a Keto Diet Treat Alzheimer's Disease?
  Researchers from Brigham Young University have found evidence that eating a ketogenic diet- which is a diet that ...
APR 15, 2021
Plants & Animals
A Protein That Creates a Fibonacci Sequence in Flower Heads
APR 15, 2021
A Protein That Creates a Fibonacci Sequence in Flower Heads
You're probably familiar with sunflowers, a member of the Asteraceae family. But the biology of the plant is a bit diffe ...
MAY 02, 2021
Cell & Molecular Biology
Coral Cells Can Spit Out the Symbionts They Don't Want
MAY 02, 2021
Coral Cells Can Spit Out the Symbionts They Don't Want
Some microalgae are symbionts, like dinoflagellates that live in coral. A symbiotic sea anemone is seen in this image by ...
MAY 09, 2021
Genetics & Genomics
Another Neurodevelopmental Disorder is Discovered
MAY 09, 2021
Another Neurodevelopmental Disorder is Discovered
Researchers are identifying more rare disorders because of advances in genetic sequencing technologies, which have made ...
MAY 11, 2021
Cell & Molecular Biology
Problems in Human Egg Fertilization Are Common
MAY 11, 2021
Problems in Human Egg Fertilization Are Common
This ©MPI for Biophysical Chemistry microscopy image shows a bovine egg after fertilization.
MAY 15, 2021
Drug Discovery & Development
New Weight Loss Drug Converts Energy-Storing Fat into Energy-Burning Fat
MAY 15, 2021
New Weight Loss Drug Converts Energy-Storing Fat into Energy-Burning Fat
According to the World Health Organization (WHO), in 2016, around 2 billion adults around the world were overweight ...
Loading Comments...