JAN 15, 2020 9:41 PM PST

Laser microchip picks up cancer markers in urine

WRITTEN BY: Tara Fernandez

A future where patients no longer need to endure expensive, painful and complicated cancer tests could soon become a reality. Researchers have developed a new diagnostic technology capable of detecting trace amounts of cancer biomarkers in urine samples. With further refinements, the label-free, chip-based device could completely revolutionize health monitoring practices as we know them. 

Biomarkers are molecules in the body such as proteins, DNA and hormones, whose levels are indicative of the presence of disease. Measuring and monitoring biomarker levels are vital in designing effective, personalized therapies for each patient.

 

 

Speaking on the immense potential of the platform, Professor in Applied Physics at the University of Twente in the Netherlands, Sonia M. Garcia-Blanco, said, "The new technology we developed paves the way to faster and ultra-sensitive detection of panels of biomarkers that will permit doctors to make timely decisions that improve personalized diagnosis and treatment of medical conditions including cancer."

Patients could say goodbye to having to take invasive tissue biopsies. Instead, providing routine urine samples would be enough for providing critical insights to physicians before, during and after cancer treatment.

On the optical microchip, laser light moving through the urine samples changes in frequency when it crosses paths with the cancer biomarker. The team validated the chip's application using the cancer biomarker, S100A4. This is a protein that normally regulates changes in cell shape as cells move or migrate. When S100A4 levels are elevated in body fluids, it acts as a prime candidate as an early biomarker for cancer, signaling the presence of metastatic tumors.

Among the challenges faced by Garcia-Blanco and the team was the urgent need for an improved diagnostic tool that is easily mass-produced, inexpensive, disposable and does not require extensive technical expertise to interpret results.

Impressively, their microchip was able to tick all the boxes and on top of that, was able to detect S100A4 with incredible sensitivity. The system was capable of picking up the biomarker from human samples at concentrations as low as 300 picomoles. For reference, that's the equivalent of positively detecting 200 millionths of a gram of salt in a liter of water.

The next steps for the group involve further simplifying the system, as well as expanding its capabilities, allowing it to spot even more known cancer biomarkers.

 

Sources: MedGadget, Optics Letters

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
APR 27, 2021
Clinical & Molecular DX
No Batteries: Health Sensor Harvests Biomechanical Energy
APR 27, 2021
No Batteries: Health Sensor Harvests Biomechanical Energy
An international team of researchers has developed a wearable health monitor that works without the need for batteries. ...
MAY 10, 2021
Clinical & Molecular DX
Noninvasive Device Warns When Wounds Are Bleeding
MAY 10, 2021
Noninvasive Device Warns When Wounds Are Bleeding
Patients with kidney failure have to undergo hemodialysis—a process where a dialysis machine takes the place of ki ...
JUN 02, 2021
Genetics & Genomics
A Genetic Form of ALS is Discovered
JUN 02, 2021
A Genetic Form of ALS is Discovered
Some medical mysteries have become much easier to solve because of advanced genetic techniques that have enabled researc ...
AUG 10, 2021
Clinical & Molecular DX
New CRISPR Device Diagnoses COVID in an Hour, Detects Variants
AUG 10, 2021
New CRISPR Device Diagnoses COVID in an Hour, Detects Variants
A team of engineers from MIT and Harvard University has developed a COVID diagnostic device with a tiny footprint but hu ...
AUG 29, 2021
Cancer
Blood Test over 90% Accurate in Detecting Lung Cancer
AUG 29, 2021
Blood Test over 90% Accurate in Detecting Lung Cancer
An AI-powered blood test was able to correctly detect the presence of lung cancer over 90% of the time in patient sample ...
SEP 05, 2021
Microbiology
Gut Bacteria May Influence Infant Brain Development
SEP 05, 2021
Gut Bacteria May Influence Infant Brain Development
Our health is closely connected to the community of microbes we carry in our gut. For example, these microbes have a pow ...
Loading Comments...