JAN 15, 2020 9:04 PM PST

Scientists Engineer a New Kind of Life Form

WRITTEN BY: Carmen Leitch

Scientists have created a new kind of life form by taking cells from the embryos of frogs called Xenopus laevis and repurposing them. These organisms were designed on a supercomputer, the cells were harvested and then reassembled under a microscope, and once again, they began to work on their own. Heart muscle cells began to contract, while skin cells functioned as a structure without much movement. Using the power of the contracting cells, these "xenobots" were able to migrate toward a target, heal after injury, and carry cargo. This work has been reported in the Proceedings of the National Academy of Sciences (PNAS).

"These are novel living machines," said study co-leader Joshua Bongard, a professor and robotics expert at the University of Vermont. "They're neither a traditional robot nor a known species of animal. It's a new class of artifact: a living, programmable organism."

"We can imagine many useful applications of these living robots that other machines can't do like searching out nasty compounds or radioactive contamination, gathering microplastic in the oceans, traveling in arteries to scrape out plaque," said study co-leader Michael Levin, Director of the Center for Regenerative and Developmental Biology at Tufts University. "

These engineered organisms could move around in their environment for days or even weeks as long as they didn't flip onto their backs. Groups of xenobots could spontaneously or collectively move in circles or push pellets toward a central location. The scientists also created a cargo pocket on the xenobots.

"It's a step toward using computer-designed organisms for intelligent drug delivery," said Bongard.

The world has many strong materials, but they often come at an environmental cost. "The downside of living tissue is that it's weak and it degrades," noted Bongard. "That's why we use steel. But organisms have 4.5 billion years of practice at regenerating themselves and going on for decades. These xenobots are fully biodegradable; when they're done with their job after seven days, they're just dead skin cells."

The researchers noted that they are also durable and to a point, self-repairing. "We sliced the robot almost in half and it stitches itself back up and keeps going," Bongard added. "And this is something you can't do with typical machines."

The scientists are seeking to understand basic questions about the nature of cellular life. "What actually determines the anatomy towards which cells cooperate? You look at the cells we've been building our xenobots with, and, genomically, they're frogs," Levin said. "It's 100% frog DNA, but these are not frogs. Then you ask, well, what else are these cells capable of building? As we've shown, these frog cells can be coaxed to make interesting living forms that are completely different from what their default anatomy would be."

"There's all of this innate creativity in life," added Bongard. "We want to understand that more deeply--and how we can direct and push it toward new forms."

Sources: AAAS/Eurekalert! via University of Vermont, PNAS

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 17, 2020
Genetics & Genomics
MAR 17, 2020
Targeting RNA With CRISPR
Researchers screened thousands of target molecules to find the most effective targets, and have made their data openly a ...
MAR 24, 2020
Cell & Molecular Biology
MAR 24, 2020
Certain Drugs May Raise the Risk of a Severe COVID-19 Infection
ACEIs and ARBs may make coronavirus infections worse, which can help explain why older adults are faring so much worse.
APR 27, 2020
Microbiology
APR 27, 2020
CDC Adds to the List of COVID-19 Symptoms
The pandemic virus that causes COVID-19 has now infected nearly 3 million people, and killed over 200,000.
MAY 04, 2020
Neuroscience
MAY 04, 2020
Certain Gut Bacteria Improves Memory in Mice
Researchers from the US Department of Energy national laboratories have found that certain gut bacteria are able to impr ...
MAY 04, 2020
Genetics & Genomics
MAY 04, 2020
Molecular Tools Reveal More About the Impacts of the Slave Trade
Scientists still have a lot to learn about the numerous and varied consequences of the transatlantic slave trade, which ...
MAY 24, 2020
Microbiology
MAY 24, 2020
Cavity-Causing Microbes Are Protected by Rings of Sugars and Germs
Bacteria can form tough communities called biofilms, which are difficult to remove and can resist the effects of antimic ...
Loading Comments...