FEB 07, 2020 6:07 AM PST

New diagnostic technology uses levitating proteins

WRITTEN BY: Tara Fernandez

Intrinsic biophysical properties of proteins hold valuable clues about how they function and their role in disease. Take, for example, one of the most commonly-used biological samples used to provide diagnostic answers: blood. A plethora of different proteins exist in blood plasma, from carrier proteins that transport hormones and vitamins, to globulins which serve as key components of the immune system.

Examining the 3-dimensional structures and physical properties of these blood proteins at high resolution would reveal a wealth of information, enabling the creation of specific proteomic profiles for different diseases. Unfortunately, however, this has remained outside the realm of possibility for researchers and clinicians due to the lack of appropriate analytical tools.

Morteza Mahmoudi, a professor at the Department of Radiology Nanoscience and Nano Biomedical Engineering at Michigan State University, has developed a new nanotechnology platform that can unveil previously hidden protein features with unprecedented resolution.

Here, magnetic nanoparticles are added to plasma samples, which naturally associate and bind to each other. This cocktail is then placed within a magnetic field, where the magnetic force causes proteins to “levitate”, separating them into bands based on their relative densities.

These bands form distinctive patterns that could provide vital indications on the health status of an individual. 

According to Mahmoudi, the next step in their research is to validate their platform for defining signature levitating protein profiles for cancer and multiple sclerosis (MS). At present, positively diagnosing MS involves using subjective measures, including monitoring the patient’s symptoms, behavior or response to initial treatments.

“There is no biomarker or MRI test to diagnose the different subtypes at the early stages. Correctly diagnosing the type of MS is critical, since it dictates which type of treatment is appropriate. We hope this MagLev method will give clinicians a technique to define the subtypes,” said Mahmoudi.

In addition, magnetic nanoparticles can also be used in other applications, including cancer therapies, genetic engineering and diagnosing bacterial infections.

 



Sources: Medgadget, Analytical Chemistry.

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
APR 19, 2021
Genetics & Genomics
Better Disease Risk Predictions May Come From Ancestry Data, Not Race
APR 19, 2021
Better Disease Risk Predictions May Come From Ancestry Data, Not Race
Researchers have suggested that it's time for medicine to move away from demographic labels that are too narrow to captu ...
JUN 04, 2021
Cannabis Sciences
Neurotechnology and Saliva Tests Detect Psychoactive Effects of Cannabis
JUN 04, 2021
Neurotechnology and Saliva Tests Detect Psychoactive Effects of Cannabis
Researchers from contract research organization, KGK Science, working on behalf of neurotechnology firm Zentrela, have f ...
JUN 15, 2021
Cardiology
A Common Thread Among 20% of Sudden Cardiac Deaths
JUN 15, 2021
A Common Thread Among 20% of Sudden Cardiac Deaths
It's estimated that 450,000 Americans die from sudden heart conditions, and in about one in ten cases, the cause is unex ...
JUL 21, 2021
Microbiology
What Causes False Positives? Understanding Blood Culture Contamination
JUL 21, 2021
What Causes False Positives? Understanding Blood Culture Contamination
Blood culture is the most widely used diagnostic tool for the detection of bacteremia and fungemia. It is the most impor ...
AUG 19, 2021
Clinical & Molecular DX
Biosensor Illuminates Growing Tumors and Healing Wounds
AUG 19, 2021
Biosensor Illuminates Growing Tumors and Healing Wounds
Cancerous tissues can be difficult to spot, particularly at the early stages. The malignant cells are sometimes indistin ...
AUG 23, 2021
Clinical & Molecular DX
Better Health Monitoring Protects Nursing Home Residents
AUG 23, 2021
Better Health Monitoring Protects Nursing Home Residents
Residents of nursing homes are particularly susceptible to health complications. Around half of all individuals residing ...
Loading Comments...