APR 22, 2020 11:39 AM PDT

Microneedle Skin Patch Collects Bodily Fluids for On-patch Diagnostic Testing

WRITTEN BY: Lawrence Renna

The collection of blood for diagnostic tests is common practice in clinical settings. However, technicians often need to separate plasma from serum, which adds additional time and complexity to the process. Also, many patients are terrified of needles being stuck in their veins. Therefore, when it comes to diagnostic testing, a simple new method that avoids using needles and drawing blood would benefit the field of clinical diagnostics. New research out of the George Institute of Technology and Washington University published in ACS Sensors details the development of a microneedle patch that painlessly attaches to the patient’s skin and collects interstitial fluid (ISF) for on-patch point-of-care diagnostic testing.

ISF is a bodily fluid that fills the interstitial space between cells. ISF contains many of the same biomarkers that are also present in the blood. However, ISF can be simpler to use in diagnostic testing than blood because it does not contain any cells or clotting agents. Patches that contain microneedles can collect ISF from the skin. Remarkably, the needles are so small that patients do not feel any pain when it is attached to their skin. Until now, the ISF collected from microneedles needs to undergo complicated multistep processes, such as biomarker extraction, centrifugation, sample loading, and analysis for diagnostic testing.

The microneedle patch developed by Srikanth Singamaneni, Mark Prausnitz, and colleagues collects ISF from the skin and delivers it to plasmonic paper containing gold nanorods. Diagnostic testing can be performed directly on the patch’s plasmonic paper in a single step. This improvement dramatically reduces the time and complexity of ISF diagnostic testing. The mechanism of detection is called surface-enhanced Raman scattering (SERS), a phenomenon in which absorbed molecules modulate the scattering of light by metal nanostructures. SERS has the capability to enhance the signal of the molecule of interest greater than 10 billion times, which makes single-molecule detection a possibility in the future. As a proof-of-principle, the researchers were able to detect dye that was injected into rats in their ISF using SERS.

 

 

Sources: American Chemical Society, ACS Sensors, and The Journal of the American Chemical Society

About the Author
  • Hello! I am a scientist currently living in Southern California, although I am originally from the east coast. I received my B.S. in Chemistry from Northeastern University in 2012, and my Ph.D. in Chemistry from the University of Massachusetts Amherst. I also had a postdoctoral appointment at the University of California, Irvine. I have written 25+ peer-reviewed articles, several patents, and one book chapter. I am a reviewer for scientific manuscripts, and a freelance editor and writer. Outside of science, I enjoy spending time with my family, training Jiu-Jitsu, and baking sourdough bread. I am happy to be writing for LabRoots.
You May Also Like
JUN 11, 2020
Clinical & Molecular DX
Glowing Chemical Reactions Could Put an End to Bad COVID Tests
JUN 11, 2020
Glowing Chemical Reactions Could Put an End to Bad COVID Tests
  Advancements in diagnostic technologies are paving the way for the next generation of ultra-sensitive serological ...
JUL 14, 2020
Clinical & Molecular DX
The Smell of Rotten Fish Could Help Predict the Recovery of Unresponsive Patients
JUL 14, 2020
The Smell of Rotten Fish Could Help Predict the Recovery of Unresponsive Patients
A study published in the journal Nature provides new evidence supporting an unconventional test to map recovery paths of ...
AUG 01, 2020
Cardiology
Identifying Biomarkers for the Diagnosis of Diabetic Cardiomyopathy
AUG 01, 2020
Identifying Biomarkers for the Diagnosis of Diabetic Cardiomyopathy
Type 2 diabetes affects millions around the world.  By itself, it prevents your body from properly using sugars fro ...
AUG 16, 2020
Microbiology
Newly Discovered Gut Enzyme Could Function as Disease Biomarker
AUG 16, 2020
Newly Discovered Gut Enzyme Could Function as Disease Biomarker
Bacteria in the gut have a powerful influence on our health, in part because all of those microbes have genes of their o ...
AUG 20, 2020
Clinical & Molecular DX
Machines Learn the Difference Between Autism and Schizophrenia
AUG 20, 2020
Machines Learn the Difference Between Autism and Schizophrenia
 
SEP 17, 2020
Coronavirus
A Biomarker May Predict the Most Severe COVID-19 Cases
SEP 17, 2020
A Biomarker May Predict the Most Severe COVID-19 Cases
Researchers may have found a way to identify the COVID-19 patients that will need targeted therapies the most.
Loading Comments...