APR 22, 2020 11:39 AM PDT

Microneedle Skin Patch Collects Bodily Fluids for On-patch Diagnostic Testing

WRITTEN BY: Lawrence Renna

The collection of blood for diagnostic tests is common practice in clinical settings. However, technicians often need to separate plasma from serum, which adds additional time and complexity to the process. Also, many patients are terrified of needles being stuck in their veins. Therefore, when it comes to diagnostic testing, a simple new method that avoids using needles and drawing blood would benefit the field of clinical diagnostics. New research out of the George Institute of Technology and Washington University published in ACS Sensors details the development of a microneedle patch that painlessly attaches to the patient’s skin and collects interstitial fluid (ISF) for on-patch point-of-care diagnostic testing.

ISF is a bodily fluid that fills the interstitial space between cells. ISF contains many of the same biomarkers that are also present in the blood. However, ISF can be simpler to use in diagnostic testing than blood because it does not contain any cells or clotting agents. Patches that contain microneedles can collect ISF from the skin. Remarkably, the needles are so small that patients do not feel any pain when it is attached to their skin. Until now, the ISF collected from microneedles needs to undergo complicated multistep processes, such as biomarker extraction, centrifugation, sample loading, and analysis for diagnostic testing.

The microneedle patch developed by Srikanth Singamaneni, Mark Prausnitz, and colleagues collects ISF from the skin and delivers it to plasmonic paper containing gold nanorods. Diagnostic testing can be performed directly on the patch’s plasmonic paper in a single step. This improvement dramatically reduces the time and complexity of ISF diagnostic testing. The mechanism of detection is called surface-enhanced Raman scattering (SERS), a phenomenon in which absorbed molecules modulate the scattering of light by metal nanostructures. SERS has the capability to enhance the signal of the molecule of interest greater than 10 billion times, which makes single-molecule detection a possibility in the future. As a proof-of-principle, the researchers were able to detect dye that was injected into rats in their ISF using SERS.

 

 

Sources: American Chemical Society, ACS Sensors, and The Journal of the American Chemical Society

About the Author
Doctorate (PhD)
Hello! I am a scientist currently living in Southern California, although I am originally from the east coast. I received my B.S. in Chemistry from Northeastern University in 2012, and my Ph.D. in Chemistry from the University of Massachusetts Amherst. I also had a postdoctoral appointment at the University of California, Irvine. I have written 25+ peer-reviewed articles, several patents, and one book chapter. I am a reviewer for scientific manuscripts, and a freelance editor and writer. Outside of science, I enjoy spending time with my family, training Jiu-Jitsu, and baking sourdough bread. I am happy to be writing for LabRoots.
You May Also Like
NOV 19, 2022
Clinical & Molecular DX
New Research Shows How Bacteria Could Help Tumors Progress and Resist Treatment
New Research Shows How Bacteria Could Help Tumors Progress and Resist Treatment
New research from the Fred Hutchinson Cancer Center in Seattle postulates that certain bacteria significantly impact the ...
NOV 22, 2022
Clinical & Molecular DX
Women With Benign Breast Diseases, Including Cysts and Fibroadenomas, Face Higher Risk of Breast Cancer
Women With Benign Breast Diseases, Including Cysts and Fibroadenomas, Face Higher Risk of Breast Cancer
Though they are very common, benign breast diseases may indicate an increased likelihood of developing breast cancer at ...
NOV 27, 2022
Health & Medicine
Elite-Level Athletes Diagnosed with Arthritis at Alarming Rates
Elite-Level Athletes Diagnosed with Arthritis at Alarming Rates
Osteoarthritis is a degenerative joint disease that occurs when the cartilage within a joint begins to break down. This ...
DEC 25, 2022
Cancer
T Cells: Naughty or Nice?
T Cells: Naughty or Nice?
In 1961, Jacques Miller discovered the function of the thymus, a lymphatic organ that houses important immune cells as t ...
DEC 30, 2022
Cancer
COVID-19 Vaccination Elicits Strong Immune Response in Patients with Blood Cancers
COVID-19 Vaccination Elicits Strong Immune Response in Patients with Blood Cancers
As we near the end of 2022, and enter our fourth year of facing COVID-19 (so named because of it’s emergence in 20 ...
JAN 29, 2023
Microbiology
Phase 2 Trial Shows Good Bacteria Can Stamp Out Bad Bacteria
Phase 2 Trial Shows Good Bacteria Can Stamp Out Bad Bacteria
We share the world, and our bodies with bacteria. Many of those microbes are harmless or even beneficial, while some can ...
Loading Comments...