JUN 11, 2020 7:34 AM PDT

Glowing Chemical Reactions Could Put an End to Bad COVID Tests

WRITTEN BY: Tara Fernandez

Advancements in diagnostic technologies are paving the way for the next generation of ultra-sensitive serological tests — capable of making routine blood tests faster, cheaper, and more accurate than ever before. A collaborative study between researchers at the University of Bologna, together with industry partners Roche and Hitachi, was recently published in Nature Communications, demonstrating the potential of this breakthrough.

Serological diagnostics work by detecting the presence of specific molecules, known as biomarkers, within a patient’s blood sample. Many immunoassays for COVID-19, for instance, indicate that an individual is infected by picking up antibodies against SARS-CoV-2 and, through a series of chemical reactions, create a quantifiable signal. 

One such chemical reaction is a light-emitting mechanism called electrochemiluminescence, or ECL. ECL-based tests are excellent diagnostics as they generally have long shelf lives, can be read in under 20 minutes, and require only tiny volumes of a patient’s blood sample.

Though commonly used, these tests can sometimes fall short in terms of reliability; biomarkers need to reach a certain threshold concentration before they are detectable. The latest developments promise to change that, boosting the sensitivity of ECL-based serological tests by up to 128 percent. This means fewer false negatives and disease being caught at much earlier stages — the weakest link in many currently-available COVID tests.

To achieve this, the team identified a series of novel reactants and imaging techniques to amplify ECL signals and make ECL-based serological tests more efficient. Diagnostic biomarkers would not be limited to measuring levels of antibodies but would also encompass enzymes, proteins, peptides, and hormones, all of which could point to the presence of disease.

Lead researcher at the University of Bologna, Giovanni Valenti commented on the implications of this work, saying, "Our work represents something unprecedented in the field of ECL because it relies on the enhancement of the signal as opposed to the enhancement of the target as it usually happens with enzymatic methods or PCR (Polymerase Chain Reaction)."

"These results pave the way for the development of ultra-sensitive serological tests," Valenti added. 

 

Sources: Technology Networks, Nature Communications


 

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
SEP 15, 2020
Cell & Molecular Biology
Autism Spectrum Disorder Biomarker is Discovered
SEP 15, 2020
Autism Spectrum Disorder Biomarker is Discovered
Scientists may have identified a biomarker for autism spectrum disorder, which can be difficult to differentiate from ot ...
OCT 05, 2020
Cancer
Does Having an Appendectomy Increase Your Risk for Cancer?
OCT 05, 2020
Does Having an Appendectomy Increase Your Risk for Cancer?
Cancer research is more than just the study of diagnostics and novel therapies. Researchers also investigate the causes ...
OCT 14, 2020
Cancer
Using Plasma Scalpels with Chemotherapy Against Brain Cancer
OCT 14, 2020
Using Plasma Scalpels with Chemotherapy Against Brain Cancer
Cold atmospheric plasma is a relatively new technique that utilizes a tool that generates a sort of plasma scalpel, exce ...
NOV 10, 2020
Clinical & Molecular DX
No More False-Negatives: An Ultrasensitive COVID Test
NOV 10, 2020
No More False-Negatives: An Ultrasensitive COVID Test
A team of researchers has improved upon the current diagnostic methodology for COVID-19, making it significantly more ac ...
NOV 27, 2020
Clinical & Molecular DX
From Months to Hours - Digital Tools Accelerate Dermatological Diagnoses
NOV 27, 2020
From Months to Hours - Digital Tools Accelerate Dermatological Diagnoses
Getting that nasty rash tested isn’t always a straightforward process. Dermatologists have notoriously long waitli ...
JAN 19, 2021
Cardiology
Looking to the Immune System for Help Diagnosing Carotid Stenosis
JAN 19, 2021
Looking to the Immune System for Help Diagnosing Carotid Stenosis
Everyone has seen a commercial about how bad fats can build up into a plaque into a blood vessel. This is called atheros ...
Loading Comments...