JUL 30, 2020 7:46 AM PDT

Laser Beams Vibrate Viruses to Distinguish Them

WRITTEN BY: Tara Fernandez

In light of the ongoing COVID-19 pandemic, the importance of rapid viral diagnostics has really hit home. Classically, the polymerase chain reaction, or PCR, is used for this purpose — a chemical reaction that makes millions of copies of the virus’ genetic material, such that it can be compared to a reference standard. This process, however, is time-consuming and has a relatively long development lag phase when new viruses, such as SARS-CoV-2 emerge.

In response, researchers at Penn State have created VIRRION: a novel technique for capturing and identifying viruses from clinical samples rapidly. The platform first sorts viruses within patient samples based on their size. Then, it characterizes them using Raman spectroscopy (a laser-powered chemical analysis technique that measures the signature vibrational patterns of molecules). The scientists demonstrated extremely promising results with VIRRION: they could identify viruses with 90 percent accuracy in a matter of minutes. This work, led by professor of physics, chemistry, and materials science and engineering at Penn State, Mauricio Terrones, was published in the Proceedings of the National Academy of Sciences.

Experts estimate that there are almost 2 million unknown viruses in nature, of which most of these pose the risk of being transmitted to humans. The devastation caused by COVID-19 has brought a heightened awareness towards developing technologies for managing emerging viral outbreaks. According to the World Health Organization, advanced clinical diagnostics for detecting viruses quickly have the potential of being transformative as a pandemic countermeasure.

The true value of the VIRRION device is its wide range of potential applications. Besides being able to be deployed in healthcare facilities, remote locations, and perhaps one day, even at home, VIRRION could also be used beyond the context of human health. For instance, farmers could quickly detect the presence of a virus before it sweeps through and decimates crops and livestock — no large, expensive laboratory equipment needed.

“The VIRRION is a few centimeters across,” explained Terrones. “We add gold nanoparticles to enhance the Raman signal so that we are able to detect the virus molecule in very low concentrations. We then use machine learning techniques to create a library of virus types.”

According to the study authors, VIRRION is not intended to completely replace the current gold standard PCR technique, but instead, complement it. Should an individual test positive with a VIRRION-based test, the next steps would be to verify the result using conventional techniques. Ultimately, the unprecedented speed and portability of VIRRION mark the beginning of a new era in viral diagnostics.

 

 

Sources: PNAS, Penn State University.

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
SEP 29, 2020
Drug Discovery & Development
Cycling Molecules into Drug Candidates
SEP 29, 2020
Cycling Molecules into Drug Candidates
Statistics show that just 1 in 5,000 drug candidates ever makes it from the lab to the pharmacy. In a process that can t ...
OCT 13, 2020
Cardiology
A Kidney Toxin Could Act as a Biomarker for Cardiovascular Risk
OCT 13, 2020
A Kidney Toxin Could Act as a Biomarker for Cardiovascular Risk
Biomarkers have taken the diagnostic field by storm over the past decade. The search for stable, easy to access indicato ...
OCT 27, 2020
Clinical & Molecular DX
A Super Sensitive Alzheimer's Test Powered by Nanozymes
OCT 27, 2020
A Super Sensitive Alzheimer's Test Powered by Nanozymes
  Simple tasks are now uphill struggles, social situations aren’t fun, and the car keys are missing again. By ...
NOV 03, 2020
Genetics & Genomics
One Eight Cancer Patients Also Carry Inherited Genetic Mutations
NOV 03, 2020
One Eight Cancer Patients Also Carry Inherited Genetic Mutations
Genetic sequencing technologies have rapidly advanced, reducing the time required to sequence the entire human genome fr ...
NOV 16, 2020
Clinical & Molecular DX
How the CRISPR-based COVID Microlab Can Intercept the Pandemic
NOV 16, 2020
How the CRISPR-based COVID Microlab Can Intercept the Pandemic
The demand for diagnostic technologies to track COVID-19 infections and control community spread of the disease has only ...
DEC 15, 2020
Clinical & Molecular DX
Who Should Get the COVID Vaccine First?
DEC 15, 2020
Who Should Get the COVID Vaccine First?
Drug developers’ frantic hunt for vaccines against SARS-CoV-2 has finally begun to bear fruit, with several vaccin ...
Loading Comments...