JUL 30, 2020 7:46 AM PDT

Laser Beams Vibrate Viruses to Distinguish Them

WRITTEN BY: Tara Fernandez

In light of the ongoing COVID-19 pandemic, the importance of rapid viral diagnostics has really hit home. Classically, the polymerase chain reaction, or PCR, is used for this purpose — a chemical reaction that makes millions of copies of the virus’ genetic material, such that it can be compared to a reference standard. This process, however, is time-consuming and has a relatively long development lag phase when new viruses, such as SARS-CoV-2 emerge.

In response, researchers at Penn State have created VIRRION: a novel technique for capturing and identifying viruses from clinical samples rapidly. The platform first sorts viruses within patient samples based on their size. Then, it characterizes them using Raman spectroscopy (a laser-powered chemical analysis technique that measures the signature vibrational patterns of molecules). The scientists demonstrated extremely promising results with VIRRION: they could identify viruses with 90 percent accuracy in a matter of minutes. This work, led by professor of physics, chemistry, and materials science and engineering at Penn State, Mauricio Terrones, was published in the Proceedings of the National Academy of Sciences.

Experts estimate that there are almost 2 million unknown viruses in nature, of which most of these pose the risk of being transmitted to humans. The devastation caused by COVID-19 has brought a heightened awareness towards developing technologies for managing emerging viral outbreaks. According to the World Health Organization, advanced clinical diagnostics for detecting viruses quickly have the potential of being transformative as a pandemic countermeasure.

The true value of the VIRRION device is its wide range of potential applications. Besides being able to be deployed in healthcare facilities, remote locations, and perhaps one day, even at home, VIRRION could also be used beyond the context of human health. For instance, farmers could quickly detect the presence of a virus before it sweeps through and decimates crops and livestock — no large, expensive laboratory equipment needed.

“The VIRRION is a few centimeters across,” explained Terrones. “We add gold nanoparticles to enhance the Raman signal so that we are able to detect the virus molecule in very low concentrations. We then use machine learning techniques to create a library of virus types.”

According to the study authors, VIRRION is not intended to completely replace the current gold standard PCR technique, but instead, complement it. Should an individual test positive with a VIRRION-based test, the next steps would be to verify the result using conventional techniques. Ultimately, the unprecedented speed and portability of VIRRION mark the beginning of a new era in viral diagnostics.

 

 

Sources: PNAS, Penn State University.

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
NOV 30, 2020
Cancer
Developing Handheld Pulse Lasers to Destroy Cancer Tissue
NOV 30, 2020
Developing Handheld Pulse Lasers to Destroy Cancer Tissue
Many take modern surgeons and surgical methods for granted. In the grand scheme of things, it wasn’t too long ago ...
DEC 01, 2020
Cardiology
The Benefits of Exercise on Adipokine Levels for Post-Menopausal Women
DEC 01, 2020
The Benefits of Exercise on Adipokine Levels for Post-Menopausal Women
The benefits of a healthy lifestyle don’t just stop when you get older. Being active has been shown to improve pos ...
DEC 22, 2020
Cardiology
A New 3D Imaging Method for Atherosclerosis Analysis in Mice
DEC 22, 2020
A New 3D Imaging Method for Atherosclerosis Analysis in Mice
Imaging in research may not sound glamorous, but how else would news stories get those cool looking science photos for t ...
JAN 14, 2021
Cardiology
Cortisol in Your Hair Could Predict Your Risk of Heart Attack
JAN 14, 2021
Cortisol in Your Hair Could Predict Your Risk of Heart Attack
The everyday tracking of health has become far easier these days with the advent of fitness watches and other technology ...
FEB 16, 2021
Genetics & Genomics
Genetic Tests That Look for Rare, Disease-Causing Variants are Usually Wrong
FEB 16, 2021
Genetic Tests That Look for Rare, Disease-Causing Variants are Usually Wrong
While people carry mostly the same genes, there are small differences in the sequences of those genes that can have prof ...
FEB 23, 2021
Clinical & Molecular DX
Dogs Versus AI-Powered Diagnostic Devices-Who Won?
FEB 23, 2021
Dogs Versus AI-Powered Diagnostic Devices-Who Won?
We’ve heard of dogs sniffing out cancer—an unsurprising skill given that they have over 200 million scent re ...
Loading Comments...