NOV 01, 2015 8:25 AM PST

Towards Precision Medicine for Prostate Cancer with Olaparib

WRITTEN BY: Xuan Pham

Gene-targeted and personalized therapy currently exists for a small handful of diseases, but that list may soon include prostate cancer.
 

Image credit: Pixabay.com


Prostate cancer represents a huge health risk for half the world’s population, as it is the most common form of cancer in men. Current treatments for the disease are confined to the affected prostate tissue, commonly involving radiation and chemotherapy aimed at the cancer cells in the prostate, or surgical removal of the prostate itself. But the line of defense against prostate cancer may have strengthened dramatically with olaparib, a drug that specifically targets DNA-repair genes.
 
Olaparib is not a novel drug. Manufactured by Astrazeneca under the tradename Lynparza, olaparib was recently approved by the FDA as a cancer drug for ovarian cancers associated with BRCA1/2 mutations. In these types of cancers, there’s a propensity of the cancer cells to rely only on the enzyme poly ADP-ribose polymerase (PARP) to repair its constantly dividing DNA. The drug olaparib exploits this vulnerability and acts as a PARP inhibitor, effectively killing the cancer cells by allowing DNA damages to go unrepaired, while having no adverse effects on normal cells.
 
BRCA1/2 mutations are also the cause of some prostate cancers. In a recent study by the Institute of Cancer Research in London, olaparib was given to a cohort of 49 men with treatment-resistant and metastatic prostate cancer. Within this cohort, 16 men showed tumor mutations in DNA damage-repair genes, including BRCA1/2, ATM, PALB2, CHEK2, FANCA, and HDAC2. The team reported significantly higher response rate to olaparib for these 16 men out of the group of 49, citing greater than 50% reduction in prostate specific antigen (PSA) levels, decreased prostate cancer cells, and shrinkage of secondary tumors.

"This trial is exciting because it could offer a new way to treat prostate cancer by targeting genetic mistakes in cancers that have spread," said Dr Áine McCarthy of the UK Cancer Research.

Beyond the immediate positive response of the trial, the real excitement for the research team rests in the identification of the mutations in DNA-repair genes from the 16 men with the best response to olaparib. Notably these genes have all shown lethal adverse interactions with PARP inhibitors, representing a promising avenue for precision medicine in the treatment of prostate cancer.
 
Though hopeful of combining genetic analysis and targeted drug therapy for prostate cancers, Dr. Emma Hall, study co-leader of the ICR, stressed follow-up trials. With the results of this clinical study, the next steps will be to demonstrate the specificity and efficacy of olaparib on the subset of prostate cancers caused by DNA-repair mutations.

 “The next trial includes only men with these mutations in their tumors, with the aim of proving that olaparib is highly effective for them," said Dr. Emma Hall.

Knowing the genetic mutations associated with each prostate cancer could redefine the clinical diagnosis and subsequent therapy for each patient. Those who exhibit tumor mutations in the DNA repair genes could be treated with PARP inhibitors as a first line of defense. Because the treatment is tailored to the patient’s genetic profile, the hope is that many more lives will be saved in the future.
 
Through active surveillance and screening, the mortality rate for prostate cancer has dramatically been reduced. However, prostate cancer remains one of the top leading causes of cancer-related deaths for men worldwide. The current study represents a huge achievement for prostate cancer treatment, identifying olaparib as a highly targeted prostate cancer drug. The study has also added to the groundwork for future clinical therapy that’s based on individual genetic profiles.

Watch the video to learn more about how PARP inhibitors like olaparib work!


Source: NEJM

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
AUG 27, 2020
Clinical & Molecular DX
Genetic Tool Predicts Breast Cancer Risk in Women of Asian Ancestry
AUG 27, 2020
Genetic Tool Predicts Breast Cancer Risk in Women of Asian Ancestry
  Many diseases such as breast cancer have both a strong genetic component, coupled with a variety of environmental ...
AUG 23, 2020
Technology
Cyborg Technology Could Advance Diagnostics
AUG 23, 2020
Cyborg Technology Could Advance Diagnostics
Although it’s true, "cyborgs" are technically science fiction being the fact that they are part human an ...
SEP 07, 2020
Clinical & Molecular DX
Spot the Robodog Measures COVID Patients' Vitals
SEP 07, 2020
Spot the Robodog Measures COVID Patients' Vitals
Hospital staff caring for COVID-19 patients face the greatest risk of exposure to the virus. A new dog-like robot design ...
OCT 06, 2020
Clinical & Molecular DX
A Smart Tattoo That Could Save Your Life
OCT 06, 2020
A Smart Tattoo That Could Save Your Life
Color-changing tattoos, powered by nanotechnology, that sense imbalances in your biochemistry providing a visual signal ...
OCT 08, 2020
Cardiology
Omega-3 Enriched Chicken as a Fish Alternative for Omega-3 Fatty Acids
OCT 08, 2020
Omega-3 Enriched Chicken as a Fish Alternative for Omega-3 Fatty Acids
We have all seen those articles telling us to get more omega-3 fatty acids in our diet. Many studies point to these spec ...
NOV 10, 2020
Clinical & Molecular DX
No More False-Negatives: An Ultrasensitive COVID Test
NOV 10, 2020
No More False-Negatives: An Ultrasensitive COVID Test
A team of researchers has improved upon the current diagnostic methodology for COVID-19, making it significantly more ac ...
Loading Comments...