NOV 17, 2020 7:00 AM PST

Tumor Stiffness Linked to Its Aggressiveness

WRITTEN BY: Tara Fernandez

As tumors grow, tiny areas at their cores are found to become stiff prior to metastasis, or the spread of cancer cells to secondary locations in the body. McGill University researchers are building technologies to sense these subtle biophysical changes, allowing them to track the progression of invasive breast cancers. The study was published in Nature Communications.

“We are now able to see these features because our approach allows us to take measurements within living, intact, 3D tissues,” said Chris Moraes, lead researcher of the study. “When tissue samples are disrupted in any way, as is normally required with standard techniques, signs of these ‘hot spots’ are eliminated.”

To study these minute forces occurring within the tumor microenvironment, Moraes and colleagues created microscopic hydrogel sensors, each approximately the size of a single cell. These sensors were embedded in 3-dimensional tumor cultures isolated from a breast cancer mouse model. The hydrogel is programmed to expand, allowing the researchers to quantify localized regions of stiffness inside the tumor mass.

“Human cells are not static. They grab and pull on the tissue around them, checking out how rigid or soft their surroundings are. What cells feel around them typically drives their behavior: immune cells can activate, stem cells can become specialized, and cancer cells can become dangerously aggressive,” explained Moraes.

“Breast cancer cells usually feel surroundings that are quite soft. However, we found that cancer cells inside aggressive tumors experienced much harder surroundings than previously expected, as hard as really old and dried up gummy bears.”

From a diagnostic perspective, intratumoral tension could be used as a metric to map future disease progression. The team is currently developing methods to analyze the mechanical profiles of tumors to better predict patient risk and outcomes.

 


Sources: McGill University, Nature Communications.

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
OCT 29, 2020
Clinical & Molecular DX
More Frequent Trips to the Pediatrician Linked to a Future Autism Diagnosis
OCT 29, 2020
More Frequent Trips to the Pediatrician Linked to a Future Autism Diagnosis
 
NOV 27, 2020
Clinical & Molecular DX
From Months to Hours - Digital Tools Accelerate Dermatological Diagnoses
NOV 27, 2020
From Months to Hours - Digital Tools Accelerate Dermatological Diagnoses
Getting that nasty rash tested isn’t always a straightforward process. Dermatologists have notoriously long waitli ...
DEC 01, 2020
Clinical & Molecular DX
Breathing New Life Into COVID Diagnostics
DEC 01, 2020
Breathing New Life Into COVID Diagnostics
Widespread diagnostic testing capacities are an absolutely critical tool for countries battling the pandemic. For now, m ...
DEC 10, 2020
Clinical & Molecular DX
Gut Feeling: Microbiome Reveals Toxic Chemical Exposure in Kids
DEC 10, 2020
Gut Feeling: Microbiome Reveals Toxic Chemical Exposure in Kids
A study by Duke University researchers has revealed that children’s gut microbiomes hold clues as to their possibl ...
JAN 27, 2021
Clinical & Molecular DX
No Pain, All the Diagnostic Gain
JAN 27, 2021
No Pain, All the Diagnostic Gain
A recent study published in Nature Biomedical Engineering describes new microneedle patch technology that takes the &ldq ...
MAR 02, 2021
Clinical & Molecular DX
Splice and Dice: Zeroing in on Rare Gene Variants in Alzheimer's
MAR 02, 2021
Splice and Dice: Zeroing in on Rare Gene Variants in Alzheimer's
DNA is the four-letter language that codes for genes, “paragraphs” of DNA information that carry specific in ...
Loading Comments...