FEB 02, 2021 8:00 AM PST

Keeping an Eye on COVID Clusters With Rapid Sequencing

WRITTEN BY: Tara Fernandez

Contact tracing is a powerful tool used by public health authorities to help slow the spread of infectious diseases such as COVID-19. Those in close contact with infected individuals can swiftly be informed, tested, and advised to self-isolate, thus lowering the risk of the COVID-19 virus spreading further.

Not every case cluster is so easy to track, however. Scientists have found a way of mapping case networks more efficiently, by leveraging one of the virus’s hallmark flaws. 

“Every time the SARS-CoV-2 virus passes from person to person, it may make copying errors that change a couple of its 30,000 genetic letters”, explains Rowena Bull, a researcher from Australia’s University of New South Wales.

“By identifying this genetic variation, we can establish how different cases of coronavirus are linked – to know where a case was potentially picked up from and who they may have given it to.” 

Bull and colleagues have spearheaded the development of a superior method of contact tracing by employing next-generation genome sequencing technologies. This method provides quick answers as to how COVID cases are linked, enabling improved pandemic-control initiatives.

These guidelines, published in Nature Communications, take advantage of nanopore sequencing. Here, subtle changes in an electric current as DNA or RNA traverses a nano-scale hole in a protein called a nanopore are measured. The signals read by this passage of nucleic acids through the nanopore are then decoded and translated into a sequence. 

One of the main benefits of this platform is its speed. Using this technology, developed by Oxford Nanopore Technologies, the entire 30 kilobase-long SARS-CoV-2 genome can be sequenced in just under four hours.

 

 

The new-and-improved form of viral tracking can help trace the origins of variants (such as the highly-contagious UK variant) and bridge the gaps left by traditional epidemiological investigations. It can also be useful in identifying so-called COVID “super-spreaders” in the community. 

Among the concerns around using this relatively new technology for COVID-tracking applications was whether or not it was accurate enough. In their publication, Bull and colleagues demonstrate this not to be the case, detecting variants with >99% sensitivity and >99% precision in a cohort of 157 COVID-positive patient samples.

“Nanopore devices are cheaper, faster, portable and don’t require the lab infrastructure needed by current standard pathogen genomics tools,” said senior author of the study, Ira Deveson, Head of the Genomic Technologies Group. 

“We hope our validation of this protocol will help other public health teams around the world adopt this technology.”

 

Sources: UNSW Sydney, Nature Communications.


 

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
NOV 05, 2020
Clinical & Molecular DX
Digging DEEP into Metabolomic Space
NOV 05, 2020
Digging DEEP into Metabolomic Space
Metabolomics is an umbrella term encompassing lipidomics and the study of smaller polar metabolites.  As such, more ...
NOV 09, 2020
Cancer
A Prognostic Expression Profile for Osteosarcoma
NOV 09, 2020
A Prognostic Expression Profile for Osteosarcoma
Tireless research goes into every cancer diagnostic tools and new therapy. Many types of cancer have made giant steps fo ...
NOV 09, 2020
Genetics & Genomics
Potential Problems with Liquid Biopsies
NOV 09, 2020
Potential Problems with Liquid Biopsies
Liquid biopsies are tests that look for biomarkers in the blood, which can help inform the treatment of cancer. The tool ...
DEC 01, 2020
Cardiology
The Benefits of Exercise on Adipokine Levels for Post-Menopausal Women
DEC 01, 2020
The Benefits of Exercise on Adipokine Levels for Post-Menopausal Women
The benefits of a healthy lifestyle don’t just stop when you get older. Being active has been shown to improve pos ...
FEB 04, 2021
Clinical & Molecular DX
Neurological and Psychiatric Aftershocks of the Pandemic
FEB 04, 2021
Neurological and Psychiatric Aftershocks of the Pandemic
One in eight COVID-19 survivors have received a diagnosis of a neurological or psychiatric condition in the year followi ...
FEB 25, 2021
Clinical & Molecular DX
A Better Way to Triage COVID Patients
FEB 25, 2021
A Better Way to Triage COVID Patients
Australian researchers have developed a COVID-19 triaging tool that serves as a crystal ball for healthcare workers. Onc ...
Loading Comments...