JAN 08, 2016 8:51 AM PST

The Mouse Avatar: A Mighty New Hero Against Melanoma

WRITTEN BY: Xuan Pham
Mouse models are essential to medicine and research, as they allow researchers to explore many biological processes that are otherwise impossible to do in people. The answers from using these mouse models often inform us on the best course of action for human health and disease. Using mouse models as personalized “avatars” for human melanoma cancer, scientists found the right targets and drug combinations to successfully stop tumor growth.
 
Can the Mighty Mouse avatar offer rescue to melanoma patients?

One of the biggest challenges in treating melanoma, skin cancer, is the high probability of relapse after initial treatment success. In about 50% of melanoma cases, the cancer is caused by an activating mutation in the BRAF gene that signal cells to grow and divide uncontrollably. Patients who receive drugs that specifically inhibit BRAF initially respond quite well, but many of those patients inevitably suffer relapse as the cells adapt and acquire new mutations. Essentially BRAF inhibitors stop working once the cancer cells figure out different “escape routes” to this drug.

“There are about fifteen routes of escape that we’ve identified in melanoma patients, and it is never easy to predict which one will be used in any given patient,” said Meenhard Herlyn, D.V.M., D.Sc., director of the Melanoma Research Center and Caspar Wistar Professor in Melanoma Research at The Wistar Institute, and lead author of this study. “These melanoma cells will do anything to get reactivated.”

To predict other mutations, i.e. escape routes, is to have the upper hand on cancer. And to do this, the research team turned to personalized mouse “avatars” – animals that have actual tumor samples from patients implanted in them. The method is officially called Patient-Derived Xenografts — from the Greek “xenos” meaning “foreign”— and has been revolutionizing cancer research since it was first described in 1988. As the tumor cells grow in the mouse avatars, the researchers can test for new mutations, identify different targets, and test different combinations of drugs to halt tumor progression.
 
PDX mouse model of human cancer

In the study, published in Clinical Cancer Research, Herlyn and his team implanted tumors from patients who were initially treated with a BRAF inhibitor and then relapsed. Genetic screens of the avatar mouse models revealed mutations in other genes, such as NRAS, MAP2K1, and MET – all possibly contributing to escape routes for the cancer.

Based on this information, the team tested a combination of drugs that simultaneously inhibit three key genes: MET (capmatinib), BRAF (encorafenib), and MEK (binimetinib). Though the individual drugs show modest anti-cancer effects, the drugs in combination showed complete and sustained tumor regression in all of the tested animals.

While the findings need to be confirmed in larger trials, this preliminary “pre-clinical trial” in the mouse avatars is highly promising for melanoma research. If the results hold true in human trials, BRAF inhibitors in conjunction with MET inhibitors may strengthen the response and increase overall survival for a subset of melanoma patients.

Curious on how melanocytes turn into melanoma? Watch the animation to find out!

Additional source: The Wistar Institute press release
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
APR 21, 2021
Clinical & Molecular DX
Miniature Implant Checks Oxygen Levels in Internal Organs
APR 21, 2021
Miniature Implant Checks Oxygen Levels in Internal Organs
  Berkeley researchers have created the next generation of deep tissue oxygen sensors: A tiny, wireless device that ...
APR 27, 2021
Clinical & Molecular DX
No Batteries: Health Sensor Harvests Biomechanical Energy
APR 27, 2021
No Batteries: Health Sensor Harvests Biomechanical Energy
An international team of researchers has developed a wearable health monitor that works without the need for batteries. ...
JUN 22, 2021
Clinical & Molecular DX
See the Nasties on Your Skin with Your Smartphone
JUN 22, 2021
See the Nasties on Your Skin with Your Smartphone
The skin is home to around 1.5 trillion bacteria, which together with fungi and viruses, make up the skin microbiota. Th ...
JUL 06, 2021
Clinical & Molecular DX
Undiagnosed Dementia Much More Prevalent Than Previously Thought
JUL 06, 2021
Undiagnosed Dementia Much More Prevalent Than Previously Thought
An analysis of data from the Health and Retirement Study has yielded a startling revelation: 91 percent of people experi ...
AUG 05, 2021
Clinical & Molecular DX
Wearable Patch Senses Blood Vessel Blockages
AUG 05, 2021
Wearable Patch Senses Blood Vessel Blockages
The cardiovascular system is like a network of highways, filled with an estimated 25 trillion red blood cells that conti ...
SEP 20, 2021
Cancer
An Established Ovarian Cancer Antigen Presents a Promising Therapeutic Target
SEP 20, 2021
An Established Ovarian Cancer Antigen Presents a Promising Therapeutic Target
For the past several decades, cancer antigen 125 (CA 125), a protein located on the surface of ovarian cancer cells, has ...
Loading Comments...