JAN 23, 2016 7:39 AM PST

Lab-Grown Heart Cells Thump With a Jolt

WRITTEN BY: Xuan Pham
Electrically "trained" human cardiomyocytes

For the first time, scientists have been successful at engineering cardiac muscle cells from stem cells that actually beat just like regular heart cells. This research has deep implications for regenerative medicine and basic biological research.
 
The heart contains 3 billion cardiac muscle cells, also known as cardiomyocytes, which perform extremely specialized functions. In response to electrical signals, these cells pulse and contract synchronously to pump blood throughout our bodies. It is this ability to beat and carry rhythm that has been the biggest challenge for lab-engineered heart muscle cells to imitate.
 
 
Led by Dr. Gordana Vunjak-Novakovic, Mikati Foundation Professor of Biomedical Engineering at Columbia University, the research team hypothesized that the lab-grown cardiomyocytes can be “trained” to beat regularly with electrical stimulation. Their research was recently published in the journal Nature Communications. 
 
They began with human embryonic or induced pluripotent stem cells that were coaxed into heart muscle cells and grown as three-dimensional structures. Then, for a period of a week, they applied electrical signals that mimicked those of a healthy heart.
 
With the right electrical stimulation, the lab-grown cardiac cells began to adapt and beat with the regularity of a normal heart. Impressively, the cells maintained this autonomous beating rate for up 2 weeks. The electrical stimulation also increased the connections between the cells, so that the autonomous beating was transferred to surrounding cardiomyocytes.
 
“We’ve made an exciting discovery,” says Vunjak-Novakovic. “We applied electrical stimulation to mature these cells, regulate their contractile function, and improve their ability to connect with each other. In fact, we trained the cell to adopt the beating pattern of the heart, improved the organization of important cardiac proteins, and helped the cells to become more adult-like.”
 
The team plans to go backwards from this discovery and find out how the immature heart begins its beating function. They also are eager to test how well the “conditioned” heart cells can be integrated and synchronize with a natural heart muscle.
 
Making heart cells that beat in a dish is a huge biomedical engineering triumph. This discovery has “applications for the study of cardiomyocyte biology, drug testing, and stem cell therapy [and] could lead to the reduction of arrhythmia during cell-based heart regeneration,” says Vunjak-Novakovic.

Additional source: Columbia Engineering press release
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
JUL 13, 2019
Clinical & Molecular DX
JUL 13, 2019
Problems In Diagnostics
While the history of medicine is incredibly interesting, it is, in equal parts, entirely horrifying. In the past, everything from bloodletting, to the bori...
JUL 25, 2019
Clinical & Molecular DX
JUL 25, 2019
Tinea Versicolor, Diagnosis And Treatment
Tinea Versicolor (TV) is a fungal infection of the skin. Also called Pityriasis Versicolor, the condition is common, especially in tropical climates. The d...
SEP 08, 2019
Health & Medicine
SEP 08, 2019
Acute Flaccid Myelitis and Its Association With Enterovirus D68
Acute flaccid myelitis (AFM), a polio-like infection, caught the attention of physicians in the U.S. during late summer and early fall in 2014. The outbrea...
JAN 14, 2020
Clinical & Molecular DX
JAN 14, 2020
Can I eat this donut? A quick test for celiac disease.
Genetic testing revealed that our ancestors have been eating wheat, rye, spelt and barley for over 8,000 years. Today, gluten, a protein found within these...
JAN 08, 2020
Clinical & Molecular DX
JAN 08, 2020
MicroRNA emerges as a biomarker for migraines
Intense, debilitating pain that can last for days. Nausea, numbness and sensitivity to light. For people who experience migraines, it’s frustrating t...
FEB 11, 2020
Clinical & Molecular DX
FEB 11, 2020
Portable device turns smartphones into diagnostic labs
Your smartphone lets you connect with friends, stores your memories, sends work emails and pays for your groceries. Soon, it could even help diagnose if yo...
Loading Comments...