JAN 29, 2016 8:07 AM PST

Precision Medicine for Brain Tumors

WRITTEN BY: Xuan Pham
Brain tumors can be rapidly profiled with new gene test

Precision medicine makes its way to one of the most complicated organs in the body: the brain. Researchers from the University of Pittsburgh School of Medicine have developed a new sequencing test that can rapidly profile brain tumors and guide the treatment of brain cancers.

Whether it’s a primary tumor or one that’s metastasized, brain cancer remains one of the scariest diagnoses that a patient can receive. According to the American Brain Tumor Association, every year nearly 70,000 new cases of primary brain cancers will be diagnosed. And every year, 14,000 people will succumb to the disease.
 
"The diagnosis of brain tumors has been based primarily on cellular features seen under the microscope," said Dr. Marina Nikiforova, senior investigator and director of UPMC's Molecular & Genomic Pathology Laboratory. "However, patients with tumors that look identical may experience different clinical outcomes and responses to treatment because the underlying genetic characteristics of their tumors differ.”
 
To find the underlying genetic changes in brain tumors, Dr. Nikiforova and her team designed a genetic sequencing panel that simultaneously analyzes 68 of the most commonly mutated genes associated with brain cancers. The test, called GlioSeq™, is performed using DNA from very small biopsy tissues from the brain cancers.
 
In a performance evaluation of 54 adults and pediatric brain cancer samples, GlioSeq correctly identified, with 100% accuracy, all the genetic alterations that are known from conventional assays. This included all single nucleotide variants, small deletions and insertions, gene fusions, and copy number variations.
 
“We designed this panel to quickly identify those traits from very small biopsies of the brain lesion,” said Dr. Nikiforova. Indeed, the test uses next-generation sequencing, a platform that’s heralded for its speed and affordability. And unlike other conventional assays, GlioSeq requires the tiniest amounts of genetic materials for analysis (20 ng of DNA, and 10 ng of RNA).
 
Most importantly, GlioSeq provides clinicians with personalized genetic information on a patient’s brain tumor. With this genetic profile, doctors can accurately classify the tumor type, which is the first step in developing a targeted treatment plan that’s tailored for the patient. Knowing the mutated genes could also allow doctors to better predict patient survival as they can anticipate patient response to certain therapies.
 
"Using GlioSeq™ helps us to understand in detail the genetic profile of brain tumors, and takes us one step closer to personalized management of our patients," Dr. Nikiforova said. "We are also working on further improving this test to include additional, recently discovered molecular alterations." 

Interested in how next-generation sequencing works? Watch this video for an amusing and unforgettable explanation.
 

Additional source: MNT
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
NOV 16, 2020
Clinical & Molecular DX
How the CRISPR-based COVID Microlab Can Intercept the Pandemic
NOV 16, 2020
How the CRISPR-based COVID Microlab Can Intercept the Pandemic
The demand for diagnostic technologies to track COVID-19 infections and control community spread of the disease has only ...
NOV 24, 2020
Cancer
Using Restfulness as a Metric for Measuring Sleep Quality and Cardiovascular Risk
NOV 24, 2020
Using Restfulness as a Metric for Measuring Sleep Quality and Cardiovascular Risk
Did you know sleeping is great? Apparently, getting a full eight hours every night can make you look fabulous and solve ...
DEC 19, 2020
Clinical & Molecular DX
Urine Tests Sets Parents' Minds at Ease in Minutes After a Miscarriage Threat
DEC 19, 2020
Urine Tests Sets Parents' Minds at Ease in Minutes After a Miscarriage Threat
Researchers have developed a chip-based test that can determine pregnancy outcomes after the signs of a possible miscarr ...
JAN 26, 2021
Clinical & Molecular DX
Prostate Cancer Screening: No More False Positives
JAN 26, 2021
Prostate Cancer Screening: No More False Positives
A new diagnostic test powered by artificial intelligence has been found to detect prostate cancer markers in urine sampl ...
JAN 27, 2021
Clinical & Molecular DX
No Pain, All the Diagnostic Gain
JAN 27, 2021
No Pain, All the Diagnostic Gain
A recent study published in Nature Biomedical Engineering describes new microneedle patch technology that takes the &ldq ...
FEB 16, 2021
Clinical & Molecular DX
What Dead Cells Can Tell Us About Our Health
FEB 16, 2021
What Dead Cells Can Tell Us About Our Health
Taking a sample of tissue called a biopsy from an organ suspected of harboring a pathology is a common diagnostic practi ...
Loading Comments...