FEB 09, 2016 7:40 AM PST

Ultrathin, Bendable Pressure Sensors for Detection of Tumor Lumps

WRITTEN BY: Xuan Pham
Ultrasensitive, flexible pressure sensors could revolutionize medicine

Despite numerous medical advancements in the past few decades, nothing has come close to replacing a doctor’s touch during routine physical exams. But a technical upgrade in the form of ultrathin, flexible pressure sensors could revolutionize how doctors use touch to detect lumps and bumps.
 
The innovation of this next generation pressure sensor technology was led by Dr. Sungwon Lee and Professor Takao Someya of the University of Tokyo's Graduate School of Engineering. Their work was recently published in Nature Nanotechnology.
 
Pressure sensors have been on the market for a while now, including those that are thin and flexible enough to mold themselves to the contours of a human hand. However, these pressure sensors give unreliable and inaccurate measurements when it gets bent, twisted, or wrinkled. And for pressure sensors to have any clinical utility, it must be able to withstand distortions to extraordinary degrees.
 
"Many groups are developing flexible sensors that can measure pressure, but none of them are suitable for measuring real objects, since they are sensitive to distortion," study lead author Sungwon Lee, also of the University of Tokyo, said in a statement.
 
To address this problem, the team conceptualized and designed a pressure sensor that was ultrathin but resilient enough to accurately detect pressure at any degree of distortion.
 
Their pressure sensor is a mere 8 microns thick – about one-fifth the thickness of a human hair. Among other components, the new sensor is composed of transistors made of carbon nanontubes, which are carbon pipes nanometers in diameter, and graphene, which are carbon sheets only 1 atom thick. These meshes of ultrathin pressure sensors can measure pressure at 144 places simultaneously, even through twisting and bending. Yet, they are thin enough that they could be easily incorporated into a pair of latex gloves.
 

The team demonstrated the device’s accuracy in reading the pressure of a balloon, which represents a soft, moveable, 3-dimensional surface not unlike that of the human body. And in experiments with a simulated blood vessel, the device successfully detected small pressure fluctuations, as well as the rate of the pressure changes. 
 
With the aid of these pressure sensors, the researchers hope that doctors can more precisely detect tumor lumps that would otherwise not be revealed with the “naked” hand. While the sensor is currently far from replacing traditional X-ray assisted mammography exams, the scientists hope to move in that direction. “The new sensors may offer easy and painless monitoring of tumors without exposure to radiation,” speculates Someya.

Interested in learning more about graphene and its many uses? Check out this video!
 

Additional sources: Live Science, EurekAlert!
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
JAN 15, 2020
Clinical & Molecular DX
Laser microchip picks up cancer markers in urine
JAN 15, 2020
Laser microchip picks up cancer markers in urine
A future where patients no longer need to endure expensive, painful and complicated cancer tests could soon become a rea ...
MAR 29, 2020
Genetics & Genomics
Biomarkers That Predict Crohn's Disease Are Identified
MAR 29, 2020
Biomarkers That Predict Crohn's Disease Are Identified
A series of studies published in Gastroenterology has outlined new approaches in predicting IBD.
APR 23, 2020
Immunology
COVID "Immunity Passports" Are a No-Go
APR 23, 2020
COVID "Immunity Passports" Are a No-Go
  Authorities are caught between dealing with the competing urgencies of abating the COVID-19 health crisis and the ...
MAY 12, 2020
Clinical & Molecular DX
Could Catching the Flu Be Linked to an Increased Cancer Risk?
MAY 12, 2020
Could Catching the Flu Be Linked to an Increased Cancer Risk?
Results from a new research study suggest that a spike in infections such as influenza could be linked to the risk of de ...
JUL 03, 2020
Cancer
Using Machine Learning to Further Classify Triple-Negative Breast Cancer
JUL 03, 2020
Using Machine Learning to Further Classify Triple-Negative Breast Cancer
One of the challenges of facing cancer researchers is coming up with a clearly defined classification system. Cancer is ...
JUL 08, 2020
Chemistry & Physics
Microbots Show Promise for Advancing Single-Cell Tissue Biopsy
JUL 08, 2020
Microbots Show Promise for Advancing Single-Cell Tissue Biopsy
A biopsy is an invasive, interventional procedure that involves extracting a tissue sample for the diagnosis o ...
Loading Comments...