FEB 16, 2016 03:16 PM PST

New Bona Fide Stem Cells Can Mend Damaged Skulls

WRITTEN BY: Xuan Pham
Stem cells play one of the most important roles in regenerative biology and medicine. Researchers from the University of Rochester Medical Center announced a new stem cell population in the skull that are responsible for the formation of the skull and craniofacial bones. The discovery could lead to new regenerative treatments for the repair of skull or facial bone deformities.
 
Newly found stem cells can repair damaged skulls

Stem cells are undifferentiated progenitor cells that have the capacity to develop into many different types of tissues. These properties make them extremely valuable to research and medicine, particularly for craniofacial deformities where reconstruction of bone defects remain highly challenging. 
 
Led by Takamitsu Maruyama, the research team focused on finding cells responsible for stitching together the bones that make up the skull. Based on previous studies, they had a hunch that skeletal stem cells exist to fulfill this role. Other clues came from the team’s years of studying the Axin2 gene and the mutations that cause craniosynostosis in mice. Craniosynostosis is a skull deformity resulting from skull bones fusing together too early, which lead to severe developmental delays and other life-threatening conditions.
 
In mice with craniosynostosis, the researchers noticed a unique pattern of movement for Axin2-expressing cells. Specifically, these cells moved to the midline of the skull and fused together the bones in that location. The cells could also repair skull damage, as they moved to fill in small trauma holes in the developing skull of some mice embryos. The team called these cells suture stem cells, as they live exclusively in the suture midline of the skull.
 
The researchers identified these cells as bona fide stem cells through rigorous tests, showing that the cells are capable of self-renewal, clonal expansion, and differentiation.
 
The authors write that, “Our findings demonstrate their true identity as skeletal stem cells with innate capacities to replace the damaged skeleton in cell-based therapy, and permit further elucidation of the stem cell-mediated craniofacial skeletogenesis, leading to revealing the complex nature of congenital disease and regenerative medicine.”
 
The discovery is a landmark first step in bringing doctors one step closer to stem cell therapy for the treatment and repair of damaged skull and facial bones. In addition to congenital malformations like craniosynostosis, the stem cell therapy could also be used to treat skull deformities caused by trauma or cancer-related treatments. 
 

Additional source: Medline Plus
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
OCT 18, 2019
Cell & Molecular Biology
OCT 18, 2019
Getting a Better Look at Patterns in Layers of Cells in the Eye
Treating some diseases of the eye has been difficult because researchers have had difficulty seeing the damage. New work can change that....
OCT 18, 2019
Health & Medicine
OCT 18, 2019
Scientists Define a New Alzheimer's-like Disease
A team of international scientists has defined a new type of dementia that closely mimics the symptoms of Alzheimer’s disease. The disease has been n...
OCT 18, 2019
Cardiology
OCT 18, 2019
Opioid Addiction Comes With Increased Risk Of Infection
Public health officials have put decades of work into the battle against infectious diseases. Now, this progress is at risk of being dismantled. A recent s...
OCT 18, 2019
Cardiology
OCT 18, 2019
The Best Way to Test Blood Pressure and Find Heart Disease
Heart disease causes hundreds of thousands of deaths annually -- can a new study on blood pressure tests guide doctors toward earlier diagnosis? About one ...
OCT 18, 2019
Health & Medicine
OCT 18, 2019
Acute Flaccid Myelitis and Its Association With Enterovirus D68
Acute flaccid myelitis (AFM), a polio-like infection, caught the attention of physicians in the U.S. during late summer and early fall in 2014. The outbrea...
OCT 18, 2019
Health & Medicine
OCT 18, 2019
Diagnosis and Treatment of Neurosarcoidosis
Sarcoidosis is a multisystem inflammatory disease characterized by the formation of non-caseating granulomas in the affected organs. The majority of p...
Loading Comments...