FEB 25, 2016 9:05 AM PST

Ordinary Skin Cells Transformed Into Brain Tumor Assassinators

WRITTEN BY: Xuan Pham
Reprogrammed stem cells (green) hunt and kill glioblastoma cells (pink)Cellular reprogramming has been a hot topic in translational and regenerative medicine ever since it was first described almost a decade ago. Recently, a team from the University of North Carolina (UNC) Chapel Hill harnessed this potential, turning ordinary skin cells into predators that kill brain cancer cells. This innovation is hailed as a breakthrough in medical science, as it provides the potential of a new treatment option for an intractable form of brain cancer known as glioblastoma.
 
Glioblastoma (GBM) is the most common and deadly form of primary brain cancer. In GBM, malignant glial cells form vast networks of tendrils throughout the brain, making it nearly impossible to surgically remove all the cancerous tissues. Dubbed as the “octopus tumor,” GBMs can evade even the most aggressive surgeries, chemotherapies, and radiotherapies, leaving patients with a five-year survival rate of less than 10%.
 
"Patients desperately need a better standard of care," said Shawn Hingtgen, senior study author and assistant professor in the UNC Eshelman School of Pharmacy.
 
To combat hidden GBM tumor cells, the research team turned to neural stem cells (NSCs), which have an innate ability to move throughout the brain, accessing hard-to-reach solid and invasive cancer cells. But the limited supply of NSCs deep within the adult brain is not enough to fight GBM. So researchers at UNC decided to make more of these NSCs.
 
 
Starting with fibroblasts, which are ordinary skin cells that produce collagen and connective tissues, the researchers added reprogramming factors and coaxed these cells to become induced neural stem cells (iNSCs). When transplanted into mice, these iNSCs had the ability to move throughout the brain, along with the penchant for killing brain tumor cells. In mice with different tumor types, the iNSCs increased survival time by 160 to 220 percent.
 
The researchers are exploring genetic modifications that would enable the iNSCs to release toxic tumor-killing proteins. Additionally, the iNSCs can be adapted to carry anti-cancer drugs, which would then be ferried directly to the cancer cells, killing cancer at its home base. Both types of modifications would make the iNSCs an even more aggressive assassinator of cancer cells in the brain.
 
"Our work represents the newest evolution of the stem-cell technology that won the Nobel Prize in 2012," Hingtgen said. "We wanted to find out if these induced neural stem cells would home in on cancer cells and whether they could be used to deliver a therapeutic agent. This is the first time this direct reprogramming technology has been used to treat cancer."

Additional source: EurekAlert!
About the Author
I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
SEP 26, 2022
Clinical & Molecular DX
The Link Between Diabetes and UTIs is Explained
SEP 26, 2022
The Link Between Diabetes and UTIs is Explained
Diabetes is a chronic disease that causes high levels of blood glucose. This is a result of the pancreas producing insuf ...
OCT 03, 2022
Clinical & Molecular DX
Could Blood Samples Detect the Risk of Peripheral Neuropathy in Type 2 Diabetes?
OCT 03, 2022
Could Blood Samples Detect the Risk of Peripheral Neuropathy in Type 2 Diabetes?
Type 2 diabetes is a disease that impacts the body’s ability to respond to insulin. Insulin is a hormone made by t ...
OCT 04, 2022
Clinical & Molecular DX
Alcohol Use Disorder Could Be Treated with Heart Medication
OCT 04, 2022
Alcohol Use Disorder Could Be Treated with Heart Medication
In a recent study published in Molecular Psychiatry, an international team of researchers led by Johns Hopkins Universit ...
OCT 13, 2022
Cardiology
Sex Differences in Atrial Fibrillation Risk
OCT 13, 2022
Sex Differences in Atrial Fibrillation Risk
New research suggests that women have a higher risk of abnormal heart rhythm than previously thought.
OCT 25, 2022
Cell & Molecular Biology
Liver Disease Discovery Resolves Controversy
OCT 25, 2022
Liver Disease Discovery Resolves Controversy
Liver diseases are a serious health problem. Chronic liver disease is estimated to impact over 1.5 billion people.
OCT 17, 2022
Clinical & Molecular DX
New Study Shows Biological Differences in the Second-Most Common Type of Breast Cancer
OCT 17, 2022
New Study Shows Biological Differences in the Second-Most Common Type of Breast Cancer
Though invasive lobular carcinoma (ILC) is the second-most common type of breast cancer, it has historically been resear ...
Loading Comments...