FEB 25, 2016 09:05 AM PST

Ordinary Skin Cells Transformed Into Brain Tumor Assassinators

WRITTEN BY: Xuan Pham
Reprogrammed stem cells (green) hunt and kill glioblastoma cells (pink)Cellular reprogramming has been a hot topic in translational and regenerative medicine ever since it was first described almost a decade ago. Recently, a team from the University of North Carolina (UNC) Chapel Hill harnessed this potential, turning ordinary skin cells into predators that kill brain cancer cells. This innovation is hailed as a breakthrough in medical science, as it provides the potential of a new treatment option for an intractable form of brain cancer known as glioblastoma.
 
Glioblastoma (GBM) is the most common and deadly form of primary brain cancer. In GBM, malignant glial cells form vast networks of tendrils throughout the brain, making it nearly impossible to surgically remove all the cancerous tissues. Dubbed as the “octopus tumor,” GBMs can evade even the most aggressive surgeries, chemotherapies, and radiotherapies, leaving patients with a five-year survival rate of less than 10%.
 
"Patients desperately need a better standard of care," said Shawn Hingtgen, senior study author and assistant professor in the UNC Eshelman School of Pharmacy.
 
To combat hidden GBM tumor cells, the research team turned to neural stem cells (NSCs), which have an innate ability to move throughout the brain, accessing hard-to-reach solid and invasive cancer cells. But the limited supply of NSCs deep within the adult brain is not enough to fight GBM. So researchers at UNC decided to make more of these NSCs.
 
 
Starting with fibroblasts, which are ordinary skin cells that produce collagen and connective tissues, the researchers added reprogramming factors and coaxed these cells to become induced neural stem cells (iNSCs). When transplanted into mice, these iNSCs had the ability to move throughout the brain, along with the penchant for killing brain tumor cells. In mice with different tumor types, the iNSCs increased survival time by 160 to 220 percent.
 
The researchers are exploring genetic modifications that would enable the iNSCs to release toxic tumor-killing proteins. Additionally, the iNSCs can be adapted to carry anti-cancer drugs, which would then be ferried directly to the cancer cells, killing cancer at its home base. Both types of modifications would make the iNSCs an even more aggressive assassinator of cancer cells in the brain.
 
"Our work represents the newest evolution of the stem-cell technology that won the Nobel Prize in 2012," Hingtgen said. "We wanted to find out if these induced neural stem cells would home in on cancer cells and whether they could be used to deliver a therapeutic agent. This is the first time this direct reprogramming technology has been used to treat cancer."

Additional source: EurekAlert!
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
MAY 29, 2018
Microbiology
MAY 29, 2018
Environmental Factors Drive Belly Fat Buildup
Abdominal fat is a major risk factor for disease. New work could help find those at risk for increased belly fat, and help reverse that trend....
JUN 07, 2018
Genetics & Genomics
JUN 07, 2018
Easily Identifying Pregnancies at Risk for Premature Birth
Premature birth affects almost ten percent of pregnancies and is the leading cause of infant mortality in the US....
JUN 08, 2018
Clinical & Molecular DX
JUN 08, 2018
Early Detection of Tooth Decay from Bacterial Invasion
We all get cavities, but have we ever thought much about the biology of the process? From the Akson Russian Science Communication Association, scientists i...
JUN 23, 2018
Microbiology
JUN 23, 2018
In a First, Keystone Virus Sickens a Person
A teenage boy in North Central Florida presented with symptoms that defied diagnosis....
SEP 05, 2018
Clinical & Molecular DX
SEP 05, 2018
Iron-based MRI Contrast Outperforms Less Safe Method
A new method for loading iron inside nanoparticles creates MRI contrast agents that work better than the mainstay gadolinium chelates, which face increased...
OCT 17, 2018
Cell & Molecular Biology
OCT 17, 2018
Saving Patients From Unnecessary Chemotherapy with a Blood Test
Often, cancer patients get chemotherapy after surgery to ensure that their cancer will not come back; for many it's not needed....
Loading Comments...