JUN 20, 2016 02:51 PM PDT

Zika: Potentially New Drug Target ID'ed

WRITTEN BY: Xuan Pham
With the current Zika outbreak, there’s been a definite shift in research to identify ways to stop this virus from spreading and causing more harm. Now, researchers from the Washington University School of Medicine have announced a culprit gene that may lead to the first Zika drug target.
   Zika research may yield new drug target | Reuters 
The Zika virus is spread by the Aedes genus of mosquitoes and was first discovered in Africa in the 1940s, but it recently became headline news as South America reported one of the largest outbreaks to date. In particular, Brazil reported over 4,000 cases of Zika-linked microcephalic births in 2015 alone. This statistic represented a staggering 20-fold increase in the incidence of microcephaly in the nation. Microcephaly is marked by abnormally small heads and brains, leading to neurological and developmental deficits. In April of 2015, the Centers for Disease Control and Prevention confirmed that Zika does, indeed, cause microcephaly. Thus, the race was on to find way to stop Zika from spreading.
 
To solve this problem, the research team looked at the virus’ genetics. “We wanted to find out if we could identify genes present in the host cells that are absolutely required by the virus for infection,” said Michael Diamond, professor at Washington University, and senior study author.
 
Diamond and his team looked at 19,000 genes in the virus. Of this, they narrowed the list down to only “nine key genes that the virus relies on for infection or to spread,” said the researcher. They then used the genome-editing tool known as CRISPR to shut down certain genes to see if the virus can still spread.
 
Though all nine genes play important roles in the virus’ spread, the team was able to hone in on one that shut down the virus but left the host cells intact. That gene is called SPCS1, and the disabled version seems to stop the West Nile virus and other members of the Flaviviridae family, including Zika, dengue, yellow fever, Japanese encephalitis and hepatitis C viruses. Importantly, the team noted no harm to the human cells from this change.
 
"Flaviviruses appear to be uniquely dependent on this particular gene to release the viral particle," Diamond said. "In these viruses, this gene sets off a domino effect that is required to assemble and release the viral particle. Without it, the chain reaction doesn't happen and the virus can't spread. So we are interested in this gene as a potential drug target because it disrupts the virus and does not disrupt the host."
 
So while a drug isn’t yet available, the study has identified a potentially ‘druggable’ pathway to stop the spread of Zika. Hopefully future research will likely include compound candidates that can inhibit SPCS1. 
 


Additional source: US National Library of Medicine 
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
MAY 31, 2018
Technology
MAY 31, 2018
PUREGRIP: Safe, User-Friendly Bottles for Biomedical Research
Foxx Life Sciences and Borosil Glass Works Joined up to Create a Lab Bottle Breakthrough...
JUL 11, 2018
Clinical & Molecular DX
JUL 11, 2018
Certain tests better flag fetuses with brain disorder risk
Fetuses with a specific, rare chromosomal aberration have a 20 percent risk of developmental or other brain disorder, new research shows. The work could le...
AUG 16, 2018
Clinical & Molecular DX
AUG 16, 2018
Bubbles and a blood test could detect brain tumors
Researchers have developed a proof-of-concept technique that allows them to detect brain tumor biomarkers with a simple blood test, rather than a complicat...
SEP 29, 2018
Microbiology
SEP 29, 2018
In a First, Rat Variation of Hepatitis E Found in a Person
It was found in a 56-year-old Hong Kong man....
NOV 13, 2018
Immunology
NOV 13, 2018
Bacteria Offers Solution to Inflammation
A team of researchers surveys the mutualistic relationship between gut bacteria and host in regards to gut inflammation in zebrafish...
NOV 17, 2018
Cardiology
NOV 17, 2018
Tobacco Smoke Associated With Increased Risk Of Diabetes
There are a number of risk factors for heart disease. Many of them are within our control such as a healthy diet and being physically active. Others we can...
Loading Comments...