AUG 12, 2016 7:18 AM PDT

Brain Training ‘Rekindles' Nerves in Paralyzed Patients

WRITTEN BY: Xuan Pham
When science experiments work as planned, researchers are overjoyed. And in the rare instances when the results actually surpass expectations, it’s so astonishing that some may even call it the M-word… a scientific miracle.

Indeed, when 8 paraplegics signed on to a study that aimed to use brain-training with robotic exoskeletons, no one expected that all of them would regain sensation and movement in their limbs. But this unexpected good fortune is exactly what happened.

Training with exoskeleton, VR helps some paraplegics recover | Image: Nicolelis lab
 The 8 participants were part of a neuro-rehabilitation study led by Dr. Miguel Nicolelis of Duke University. This program entailed 12 months of intense training with brain-machine interfaces (BMI), which are electronic communication systems that translate brain activity to a computer. This allows patients to control external devices, like prostheses and robotic exoskeletons, with just their thought.
 
Just learning how to move a machine attached to a limb is in itself a monumental feat of technology and brainpower. But it appears this skill has exceptional benefits.
 
"We couldn't have predicted this surprising clinical outcome when we began the project," said Nicolelis who led the trial. “What we’re showing in this paper is that patients who used a brain-machine interface for a long period of time experienced improvements in motor behavior, tactile sensations, and visceral functions below the level of the spinal cord injury.”
 

 "If you touched them with a pin, or a brush… they would feel something that they didn't experience before," said Nicolelis. "They also experienced a significant visceral improvement. This translated into better bowel and bladder functions - which are very critical for these patients."
 
How could this have happened? Scientists think the BMI training was powerful enough to reawaken some spinal cord nerves that were damaged, but not yet dead. "Over time, training with the brain-machine interface could have rekindled these nerves," said Nicolelis. "It may be a small number of fibers that remain, but this may be enough to convey signals from the motor cortical area of the brain to the spinal cord."
 
The changes are significant, too. Four of the eight patients experienced such drastic improvements that they’re now considered to have “partial paralysis” instead of “complete paralysis.”
 
The person with the biggest improvement in movement and sensation was a 32-year-old woman, who, by the end of the study, was able to move her legs on her own with the help of a harness that supported her weight. This is a huge accomplishment, considering the woman had been paralyzed for 13 years.
 
That the changes were so dramatic after so long points to the immense plasticity of the brain. "It clearly shows that there's a lot of untapped neuroplasticity potential within even a chronic spinal cord injury patient," said Mark Bacon, chief executive at the UK charity Spinal Research who was not associated with the study.
 

Additional sources: Live Science, BBC
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
MAY 19, 2020
Clinical & Molecular DX
Hormone Levels in Infants Linked to Autism
MAY 19, 2020
Hormone Levels in Infants Linked to Autism
  A potential biomarker for autism has been identified in infants: the levels of a hormone called vasopressin found ...
JUN 26, 2020
Cardiology
Drug for Osteoporosis Linked to Increased Risk of Adverse Cardiovascular Events
JUN 26, 2020
Drug for Osteoporosis Linked to Increased Risk of Adverse Cardiovascular Events
In a recent study done by Jonas Bovijn, MBChB, MSc, DLSHTM, of the Big Data Institute at the University of Oxford’ ...
JUL 27, 2020
Clinical & Molecular DX
Guidance for Optimization of a Real-Time qPCR Assay
JUL 27, 2020
Guidance for Optimization of a Real-Time qPCR Assay
Optimizing the formulation of reagents for your qPCR assay requires careful experimental design that looks across severa ...
AUG 07, 2020
Cancer
Immune-Related Genes as Prognostic Biomarkers
AUG 07, 2020
Immune-Related Genes as Prognostic Biomarkers
Cancer is one of the most persistent and hardy diseases. Cancers often develop the ability to suppress the immune system ...
SEP 01, 2020
Clinical & Molecular DX
Scalp Implants Monitor Epileptic Seizures
SEP 01, 2020
Scalp Implants Monitor Epileptic Seizures
Neuroscientists have developed devices that, when implanted under the scalp of individuals living with epilepsy, can mon ...
SEP 17, 2020
Coronavirus
A Biomarker May Predict the Most Severe COVID-19 Cases
SEP 17, 2020
A Biomarker May Predict the Most Severe COVID-19 Cases
Researchers may have found a way to identify the COVID-19 patients that will need targeted therapies the most.
Loading Comments...