OCT 24, 2016 2:47 PM PDT

Drug Gets Makeover to Bypass the Blood-Brain Barrier

WRITTEN BY: Xuan Pham
The blood-brain barrier is a formidable defense for the protection of one of the most critical organs in the body – the brain. Yet, while this barrier keeps out pathogens and other invaders, it also prevents life-saving drugs from reaching the brain, severely limiting the available therapies for brain-related diseases, such as brain cancer. Now, working with a potent anticancer drug that’s far too damaging for the rest of the body save for the brain, Johns Hopkins researchers learned how to bypass the blood-brain barrier.
 
The anticancer drug is known as 6 diazo-5-oxo L norleucine (DON), and it’s quite effective at shrinking tumors by blocking the cancer cell’s ability to use the amino acid glutamine. However, this property raises the toxicity of DON, especially in the gastrointestinal system, where glutamine is heavily consumed. But what if researchers could confine DON to one organ that’s not so dependent on DON?
 
"We wondered whether we could make a safer and more tolerable form of DON by enhancing its brain penetration and limiting its exposure to the rest of the body and, thus, toxicity," said Barbara Slusher, professor of neurology, medicine, psychiatry, neuroscience and oncology at the Johns Hopkins University School of Medicine, and the study’s senior author.
 
Based on collaboration with researchers at the Johns Hopkins Kimmel Cancer Center, the team zeroed in on tumors in the brain. "A tumor uses aggressive metabolism to grow, sucking up all the surrounding nutrients, which leads to a very oxygen-poor, acidic environment that is not conducive to cancer-killing immune cells," said Jonathan Powell, an immunologist at the Kimmel Cancer Center. Drugs that block glutamine could provide the edge needed for immunotherapy drugs to work.
 

But then, the question became how to get DON into the brain? The team tackled this by making the drug more lipid soluble, a key property that helps DON slip past the blood-brain barrier. Once inside the brain, the drug is converted back to its potent form to attack cancer.
 
Importantly, the team demonstrated the effectiveness of this technique in live monkey studies. In monkeys that were given the altered derivative, the team found the drug was more highly concentrated in the brain – the target of the drug. By contrast, monkeys given the unaltered version of the drug had 7 times the drug concentration in their blood, confirming the inability to localize to a certain target.
 
"We showed that we can modify these drugs to have further specificity to target the brain and limit toxicity to the rest of the body," says Slusher. "This strategy can potentially be used to develop tailored drugs for different cancers."
 
The team hopes to combine the new formulation of DON with other immunotherapy agents to have new synergistic anticancer weapons. "The hope is to enhance certain immunotherapy drugs by adding such glutamine antagonists," says Powell. 

Additional sources: Johns Hopkins University
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
SEP 24, 2019
Immunology
SEP 24, 2019
Flu Shot Less Effective Due to Overuse of Antibioitics
New research out of the Stanford University School of Medicine shows that the consequence of overuse of antibiotics lowers the effectiveness of the seasona...
NOV 12, 2019
Immunology
NOV 12, 2019
Allergy Shots May Work for Kids with Pollen Food Allergy Syndrome
It’s not common for young children to develop pollen food allergy syndrome (PFAS), but for those that do, there’s not too much parents can do o...
NOV 14, 2019
Cell & Molecular Biology
NOV 14, 2019
Scientists Find a Non-Invasive Way to Detect Prions
Misfolded proteins, also called prions, can cause a host of problems, including neurodegenerative disorders....
MAR 13, 2020
Cardiology
MAR 13, 2020
Heart Cancer, A Rarity
Cardiac tumors are generally considered rare, happening in only one in 500 cardiac surgery cases. These growths are often benign and occur on the non-cardi...
MAR 23, 2020
Microbiology
MAR 23, 2020
The Loss of a Sense of Smell May be a Major Symptom of COVID-19
The loss of the sense of smell may be a symptom of a COVID-19 infection in people with no other symptoms....
APR 01, 2020
Cardiology
APR 01, 2020
Avoiding Caries in Children
Thankfully, children are free of many of the chronic diseases that plague older populations. That said, one of the most common chronic diseases children do...
Loading Comments...