OCT 24, 2016 2:47 PM PDT

Drug Gets Makeover to Bypass the Blood-Brain Barrier

WRITTEN BY: Xuan Pham
The blood-brain barrier is a formidable defense for the protection of one of the most critical organs in the body – the brain. Yet, while this barrier keeps out pathogens and other invaders, it also prevents life-saving drugs from reaching the brain, severely limiting the available therapies for brain-related diseases, such as brain cancer. Now, working with a potent anticancer drug that’s far too damaging for the rest of the body save for the brain, Johns Hopkins researchers learned how to bypass the blood-brain barrier.
 
The anticancer drug is known as 6 diazo-5-oxo L norleucine (DON), and it’s quite effective at shrinking tumors by blocking the cancer cell’s ability to use the amino acid glutamine. However, this property raises the toxicity of DON, especially in the gastrointestinal system, where glutamine is heavily consumed. But what if researchers could confine DON to one organ that’s not so dependent on DON?
 
"We wondered whether we could make a safer and more tolerable form of DON by enhancing its brain penetration and limiting its exposure to the rest of the body and, thus, toxicity," said Barbara Slusher, professor of neurology, medicine, psychiatry, neuroscience and oncology at the Johns Hopkins University School of Medicine, and the study’s senior author.
 
Based on collaboration with researchers at the Johns Hopkins Kimmel Cancer Center, the team zeroed in on tumors in the brain. "A tumor uses aggressive metabolism to grow, sucking up all the surrounding nutrients, which leads to a very oxygen-poor, acidic environment that is not conducive to cancer-killing immune cells," said Jonathan Powell, an immunologist at the Kimmel Cancer Center. Drugs that block glutamine could provide the edge needed for immunotherapy drugs to work.
 

But then, the question became how to get DON into the brain? The team tackled this by making the drug more lipid soluble, a key property that helps DON slip past the blood-brain barrier. Once inside the brain, the drug is converted back to its potent form to attack cancer.
 
Importantly, the team demonstrated the effectiveness of this technique in live monkey studies. In monkeys that were given the altered derivative, the team found the drug was more highly concentrated in the brain – the target of the drug. By contrast, monkeys given the unaltered version of the drug had 7 times the drug concentration in their blood, confirming the inability to localize to a certain target.
 
"We showed that we can modify these drugs to have further specificity to target the brain and limit toxicity to the rest of the body," says Slusher. "This strategy can potentially be used to develop tailored drugs for different cancers."
 
The team hopes to combine the new formulation of DON with other immunotherapy agents to have new synergistic anticancer weapons. "The hope is to enhance certain immunotherapy drugs by adding such glutamine antagonists," says Powell. 

Additional sources: Johns Hopkins University
About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
JUL 06, 2020
Cancer
Staying Active Could Help Patients with Metastatic HER2+ Breast Cancer
JUL 06, 2020
Staying Active Could Help Patients with Metastatic HER2+ Breast Cancer
Breast cancer is the most lethal cancer affecting women worldwide. While most are caught early thanks to the many diagno ...
JUL 14, 2020
Cardiology
Changing Your Doctor Can Cause Confusion in Your Chart
JUL 14, 2020
Changing Your Doctor Can Cause Confusion in Your Chart
Nowadays, many people’s lifestyle sees them move on to better pastures every few years. Staying in one place is no ...
JUL 14, 2020
Clinical & Molecular DX
The Smell of Rotten Fish Could Help Predict the Recovery of Unresponsive Patients
JUL 14, 2020
The Smell of Rotten Fish Could Help Predict the Recovery of Unresponsive Patients
A study published in the journal Nature provides new evidence supporting an unconventional test to map recovery paths of ...
JUL 30, 2020
Genetics & Genomics
How Are DNA Testing Companies Helping the Fight Against COVID?
JUL 30, 2020
How Are DNA Testing Companies Helping the Fight Against COVID?
One of the most puzzling characteristics of coronavirus is how some people develop severe symptoms and die from the dise ...
AUG 04, 2020
Cardiology
Does Chronic Anxiety Affect Heart Health?
AUG 04, 2020
Does Chronic Anxiety Affect Heart Health?
Anxiety is something that is talked about far more often nowadays. In recent years, it has even been linked to a variety ...
AUG 13, 2020
Clinical & Molecular DX
A Call for Bigger, Better Studies on AI Breast Cancer Diagnostics
AUG 13, 2020
A Call for Bigger, Better Studies on AI Breast Cancer Diagnostics
A staggering 1 in 8 women in the U.S. will develop an aggressive form of breast cancer in their lifetime, making it the ...
Loading Comments...