SEP 27, 2017 03:21 PM PDT

Handheld Microscope Can be Used During Live Surgery

WRITTEN BY: Xuan Pham
3 2 209

Image credit: Pixabay.com

Currently, if a doctor suspects a patient has cancer or other diseases, he orders a tissue biopsy to confirm whether the pathology of the sample matches the diagnosis. The biopsy can be highly invasive, costly, and require weeks to months for processing. To circumvent this routine, researchers at the Imperial College London have engineered two microscope prototypes that can assess the tissue and take images in the patient in real time. The team hopes their instruments can reduce stress to the patients, while simultaneously cutting time and healthcare costs.

Of the two devices, the first is a handheld microscope that doctors can use to assess external tissues. This device can even be used by surgeons during surgery, letting doctors know, in real time, whether the exposed tissues is cancer or normal. Key to this microscopes innovation is its internal tracking mechanism that makes it possible to acquire high quality 3D images of tissues. This means that tissues can be analyzed within a breathing, moving patient, instead of pre-extracted tissues.
 
The second prototype is an endoscope – a lit device that lets doctors see inside cavities of the body without drastic surgery. Coming at a fraction of a millimeter in diameter, the freshly designed endoscope uses optical fibers and can be threaded through tiny areas with minimal effort. It will allow doctors to see at the cell level even deep inside the body.
 
Both devices rely on a technique known as multiphoton excited fluorescence microscopy, which involves “involves illuminating tissue with light of a specific wavelength that causes molecules in the tissue to emit light in response,” according to the Engineering and Physical Sciences Research Council release. As such, the devices allow researchers to obtain high resolution images at impressive depths beneath the surface of the body, all while the patient is on the table.


In addition to cutting down the time it would take to process samples and confirm a diagnosis, the data obtained by the prototypes could, arguably, be considered more reliable. This is because doctors can view the cells in real time, in the body’s native context. Thus, their conclusions on whether a tissue is abnormal are free from the effects of specimen processing.
 
"These new devices open up exciting possibilities in the field of in-situ diagnosis and could help improve patient care in the future," said Chris Dunsby, researcher at the Imperial College London, and study leader.
 
"This has been a very exciting project which has enabled us to develop fibers with performance which we would have previously thought impossible," said Jonathan Knight, study leader from the University of Bath. 

Additional source: Engineering and Physical Sciences Research Council 

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
APR 04, 2018
Immunology
APR 04, 2018
Why is Whooping Cough Back?
Pertussis, or whooping cough, is back, and it’s at least partly because individuals who were vaccinated in the early days of the whooping cough vacci
APR 24, 2018
Clinical & Molecular DX
APR 24, 2018
An Atlas of the Human Genome
Scientists from the Hebrew University of Jerusalem want to identify individual genes responsible for specific diseases. This goal inspired their new Nature
APR 25, 2018
Cancer
APR 25, 2018
Artificial Mole Tattoo for Early Cancer Detection
Researchers are looking to biotechnology to enhance the detection of diseases including cancer. A group utilized the consistent presence of long-term hypercalcemia to detect early cancer.
JUN 18, 2018
Immunology
JUN 18, 2018
Detecting and Diagnosing Rheumatoid Arthritis Before it Begins
Unique gene signatures and tiny changes in the immune system that occur in the earliest stages of rheumatoid arthritis, an autoimmune disease, could soon b
JUL 01, 2018
Videos
JUL 01, 2018
Growing Patient Cells on a Chip for Personalized Drug Screens
This work could help eliminate animal models, and tailor medicine to the patient.
JUL 19, 2018
Microbiology
JUL 19, 2018
Mom's Microbiome has a Big Impact on Kid's Autism Risk
For many years, scientists have been trying to learn more about the causes of autism.
Loading Comments...