SEP 27, 2017 02:00 PM PDT
The Key to Regenerative Medicine? Zebrafish
WRITTEN BY: Kara Marker
3 4 283

As far as regenerating damaged heart tissue, zebrafish have it all figured out. With heart disease being the leading cause of death for humans worldwide, there’s certainly a demand for the regenerative secrets of the zebrafish. In the newest study from Duke University, scientists look at the decisions cells make that ultimately lead to tissue regeneration.

Epicardium cells covering the heart regenerate in a wave led by large cells that contain multiple nuclei per cell (magenta). These cells are under more mechanical tension (aqua streaks) than trailing cells which divide to produce cells with one nucleus each. Credit: Jingli Cao, Duke

Zebrafish hearts continue to beat normally after being removed and grown in the lab, perfect for a scientist studying their activity to make regeneration possible for humans. In 2015, Duke scientists being working with their “Zebrafish heart explant culture system” to study the epicardium, the outer layer of tissue covering the surface of the heart, after it’s damaged.

Researchers correctly predicted the presence of cells replicating their DNA and dividing into new cells as part of the regenerative process, but they didn’t foresee a different cell activity, which was actually happening at the forefront of the regenerative process: cells that were replicating DNA but not dividing, becoming “supersized cells.”

"Imagine you have a wound on your skin and you want to cover it as soon as possible, but you don't have enough cells," explained Jingli Cao, PhD, lead study author. "By making cells become larger, you could efficiently cover the wound. We think this tactic could increase the regenerative capacity of this population by covering the surface in an efficient manner."

Supersized cells traveled faster and had higher mechanical tension than the smaller, dividing cells that followed. Cao and the Duke team believe that mechanical tension is the power behind the ability of supersized cells to replicate DNA but not divide.

"This study is trying to understand the basic decisions cells make when they regenerate," explained Ken Poss, director of Duke’s Regeneration Next Initiative. "If there are methods we could use to guide their decisions, to determine whether they generate larger cells or more cells through division, it could be one way to influence the ability of a tissue to repair."

Cao, Poss, and the other researchers are now looking for small molecules that could boost the “regenerative capacity” of heart tissues. Could scientists manipulate mechanical tension to implore human heart cells to regenerate lost tissues like the zebrafish do?

The present study was published in the journal Developmental Cell.

Source: Duke University

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
MAR 27, 2018
Cardiology
MAR 27, 2018
Stroke Drug Reduces Potentially Dangerous Inflammation
Reducing inflammation as soon as possible after stroke symptoms begin to appear could save patients from devastating brain damage. In a new study from the
APR 02, 2018
Cardiology
APR 02, 2018
Heart Defects in Newborns May Warn of Disease for Mother Later in Life
For the first time, scientists have demonstrated a risk relationship between mothers who give birth to babies with congenital heart defects and an increase
MAY 11, 2018
Cardiology
MAY 11, 2018
Gene Therapy to Reduce Risk of Cardiac Arrhythmia
During recovery from a heart attack, the danger is far from over. In a new study from scientists at the University of Bonn and an international team of col
JUN 18, 2018
Cardiology
JUN 18, 2018
When do you really need to be screened for aortic aneurysms?
The decrease in death from abdominal aortic aneurysms in recent decades may not be due to increased screening. In fact, University of Gothenburg scientists
JUN 19, 2018
Cardiology
JUN 19, 2018
Autopsies to Understand Heart Disease: What Went Wrong
Autopsies aren’t as common as they used to be, but scientists may have a reason for a comeback. A new series of studies from the American Heart Assoc
JUN 22, 2018
Cardiology
JUN 22, 2018
Gene Editing and Stem Cell Tech Predict Heart Disease Risk
Scientists are developing technology to predict an individual’s risk of developing heart disease via gene editing, stem cell technologies, and identi
Loading Comments...