OCT 13, 2017 5:50 AM PDT

Chemists Replenish Stock of Precious Cancer, Alzheimer's Drug

WRITTEN BY: Xuan Pham

Image credit: Pixabay.com

Stanford scientists just discovered a new way to make large quantities of a precious drug that holds potential as treatment for cancer, HIV, and Alzheimer’s disease.

Known as bryostatin 1, this compound is currently in high demand for multiple clinical trials. It was originally discovered in the 1960s, in a marine organism commonly known as bryozoan, or scientifically as Bugula neritina. In labs, the compound showed promise against cancer and other diseases. But when researchers went back to the sea to get more bryozoan, they were met with many hurdles.

First, the process of extracting bryostatin 1 from B. neritina is excruciatingly difficult with very low yield. From 14 tons of B. neritina, scientists isolated just 18 grams of the precious bryostatin 1 compound. "It's basically three elephants going down to a salt shaker," said Dr. Paul Wender, a professor of chemistry and member of Stanford ChEM-H, and the study’s lead author.

To make matters worse, the supply B. neritina was also difficult to obtain, as the organism only produces the bryostatin compound in a narrow depth and temperature range.

While scientists toiling away in the lab came up with a synthetic version of bryostatin 1, it took 57 steps for similar low yields.

The demand for bryostatin 1 was simply too high for the supply, which was drying up and preventing clinical trials from going forward.

"Ordinarily, we're in the business of making chemicals that are better than the natural products,” Wender said. "But when we started to realize that clinical trials a lot of people were thinking about were not being done because they didn't have enough material, we decided, 'That's it, we're going to roll up our sleeves and make bryostatin because it is now in demand.”

The efforts of the team proved fruitful, as they came up with a process that’s almost half the number of steps (29 instead of 57), and with a significant increase in yield, as compared to extracting the compound from B. neritina itself.

“The talent and dedication of this group made possible an achievement which many had thought impossible,"Wender said. "We are so fortunate to have people who are undeterred by that."

Using their new protocol, the lab produced over 2 grams of bryostatin 1. While that may not seem like a lot, remember that only 18 grams were extracted from 14 tons of B. neritina. By scaling up production, the team estimates to make 20 grams of bryostatin 1 in a year, an amount which reportedly can treat 20,000 cancer patients.

The drug is also in-demand for clinical trials involving Alzheimer’s patients as well as HIV patients. No doubt the mass production of bryostatin 1 will facilitate discoveries on multiple health areas in the future.

Additional source: Stanford

About the Author
  • I am a human geneticist, passionate about telling stories to make science more engaging and approachable. Find more of my writing at the Hopkins BioMedical Odyssey blog and at TheGeneTwist.com.
You May Also Like
JUL 16, 2019
Health & Medicine
JUL 16, 2019
Rare Bone Marrow Manifestation in Sarcoidosis
Sarcoidosis is an inflammatory disease with the hallmark diagnostic feature being non-caseating granulomas--clumps of immune cells including macr...
SEP 22, 2019
Technology
SEP 22, 2019
Blood Incubation Using Laser Technology
The world’s first ever blood incubator was developed using laser technology and could someday prevent fatal blood transfusions in critically ill pati...
NOV 07, 2019
Clinical & Molecular DX
NOV 07, 2019
A Revealing Look at Rare Disease Incidence
Being diagnosed with a rare disease can be especially terrifying for patients. After all, many of these diseases have no treatment options. This is because...
NOV 27, 2019
Health & Medicine
NOV 27, 2019
3D-printed cell traps catch cancer cells on the move
The early stages of metastasis, or the spread of cancer cells from the primary tumor site, are incredibly difficult to detect by analyzing blood samples. F...
DEC 09, 2019
Clinical & Molecular DX
DEC 09, 2019
Astronauts help to advanced personalized medicine
Extreme temperatures and lethal levels of radiation are just some of the hazards faced by astronauts as they traverse the harsh conditions of space. Additi...
FEB 24, 2020
Clinical & Molecular DX
FEB 24, 2020
Nanoparticles provide momentum for better diagnostic imaging
Photoacoustic imaging is an emerging tool with a vast array of biomedical applications ranging from the detection of brain lesions to imaging early signs o...
Loading Comments...