FEB 15, 2018 06:11 AM PST

New Blink Reflex Test Quickly Diagnoses Concussions

WRITTEN BY: Kara Marker

A new device called the Blink Reflexometer™ could drastically improve field-side diagnostic capabilities used by athletic trainers and medical staff in diagnosing athletes suspected of having a concussion. Developed by Nancey Tsai, MD, from the Medical University of South Carolina (MUSC), the new technology brings objectivity to a diagnostic field historically weighed down by misleading self-reporting and objective assessments of balance.

The Blink Reflexometer being used to measure the blink reflex of a cadet. Credit: The Citadel.

At least 25 percent of the nearly 4 million concussions estimated to occur in the United States by the Centers for Disease Control and Prevention (CDC) have contact sports to blame, experts say. Current diagnostic measures are severely lacking objectivity in their assessments, but the new Blink Reflexometer™ provides the opportunity to change everything.

The device works as a “high-speed, videography-based” technique for analyzing a person’s blink reflex, which researchers find reliable as a “primitive reflex.” After Tsai developed the Blink Reflexometer™, The Citadel’s Dena Garner, PhD, was eager to join the project.

"Concussion is a mild traumatic brain injury, and we know it's under-reported because, so often, it goes unnoticed or undiagnosed,” Garner explained. “The chance to test a piece of equipment that can be used field-side to assess concussions was especially compelling."

The device works like this. An individual suspected of having a concussion wears a mask that “delivers three to five air puffs at random intervals over 20 seconds” to the outer corner of the eye. The Blink Reflexometer™ records blink reflex at 280 frames/second, and specific frames isolated and analyzed.

"A human's blink reflex has a long pathway - originating at the facial area and continuing to the brain stem,” Garner explained. “If any place along that pathway is damaged, changes in the blink reflex can indicate that there is a potential problem.”

Tsai and Garner tested the the Blink Reflexometer™ by collecting blink reflex data in a study with 24 male football players between the ages of 18 and 22. The study participants were split into two groups: those who were suspected of experiencing a “concussive event” and those who were not, to serve as experimental and control groups. Researchers established baseline values for blink reflex parameters, athletic history, physical examination, balance parameters, and neurocognitive test scores.

A control group was particularly important in this study because normal blink reflex changes occur during active sports play even when a concussion is not involved. Researchers needed to be able to tell the difference between these normal changes and changes that implied an individual had experienced a concussion.

Ultimately, researchers were able to identify key differences between the control group and the potentially concussive group, including blink latency, lid velocity, and increase time for eyes to open.

"We now know that concussions and normal play both affect the blink parameters, but in differing directions,” Garner explained. “Our observations identified something distinctly different occurring in the concussion brains that can serve as a valuable new indicator for diagnosing the condition."

Going forward, Tsai, Garner, and other researchers plan on expanding the collection of blink reflex data to other age groups and sports. Someday soon, they hope to apply the capabilities of the Blink Reflexometer™ to neurological diseases like Parkinson’s and multiple sclerosis (MS).

The present study was published in the journal Cogent Engineering.

Source: Medical University of South Carolina

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
NOV 21, 2019
Clinical & Molecular DX
NOV 21, 2019
A Microbiome Lives On Your Eyes
There is a lot of talk and excitement recently about the microbiome. Many people have heard about the benefits of healthy bacteria in the gut. Some may hav...
NOV 21, 2019
Clinical & Molecular DX
NOV 21, 2019
Diagnosing Autism, The Child-Friendly Way
The term autism spectrum disorder ASD is an umbrella term for a wide range of conditions. These conditions are characterized by difficulty in social situat...
NOV 21, 2019
Health & Medicine
NOV 21, 2019
Acute Flaccid Myelitis and Its Association With Enterovirus D68
Acute flaccid myelitis (AFM), a polio-like infection, caught the attention of physicians in the U.S. during late summer and early fall in 2014. The outbrea...
NOV 21, 2019
Clinical & Molecular DX
NOV 21, 2019
The Invisible Killers in Your Home
Do you know a mist of air freshener or the burning of a deliciously-scented candle in your home is a "sweet" and a slow poison to you and your loved ones....
NOV 21, 2019
Clinical & Molecular DX
NOV 21, 2019
Patients can Self-Inject Easily Using an Integrated Pre-Filled Syringe and Autoinjector
The patients suffering from chronic disease require a regular dose of medicines, either orally or as injections. To prevent a monthly visit...
NOV 21, 2019
Immunology
NOV 21, 2019
Allergy Shots May Work for Kids with Pollen Food Allergy Syndrome
It’s not common for young children to develop pollen food allergy syndrome (PFAS), but for those that do, there’s not too much parents can do o...
Loading Comments...