JUN 06, 2018 5:54 AM PDT

Computer Simulations Offer Alternative Methods for Diabetic Drugs

WRITTEN BY: Nouran Amin

The Governor's Chair for Molecular Biophysics at the University of Tennessee (Knoxville), Jeremy Smith, and the director for the Center for Molecular Biophysics at Oak Ridge National Laboratory, has collaborated with a research team from UT Health Science Center to find a chemical substance that may lower glucose levels in the same efficacy as the common diabetic metformin but with the possibility of being administered in lower dose.

Smith, in collaboration with Jerome Baudry, of the University of Alabama (Huntsville) as well as graduate student Karan Kapoor, from the University of Illinois at Urbana-Champaign, studied high-performance computing to develop sophisticated simulations that suggest chemicals that could activate GPRC6A, which is protein that regulates sugar levels while at the same time corrects abnormalities in pancreatic insulin secretion, glucose uptake into skeletal muscle, and the regulation of glucose and fat metabolism in the liver.

"This chemical compound lowers sugar levels in mice as effectively as metformin, but with a 30-times lower dose," Smith said. "It therefore is a good starting point for the development of a new and effective drug to fight diabetes."

Wolrdwide, about 400 million people suffer from Type 2 diabetes. The global cost of treatment and management of this metabolic disorder is estimated to be a trillion dollars annually. Metformin, a common diabetic drug that works to reduce the liver's production of sugar and lessen the risk of mortality, is currently first-line medication treatment by physicians. However, there remains a dire need for an alternative treatment option for patients who do not respond to metformin as well as others.

 

The computations derived from the research study confirmed that multiple chemical compounds, tested each by the Quarles laboratory at UTHSC, may activate the GPRC6A protein. Furthermore, a team of UTHSC medicinal investigators utilized the results from the research study to synthesize related molecules for pre-clinical testing use. The chemical compound by the name of ‘DJ-V-159’ was identified and concluded to be highly potent in inducing insulin secretion and decreasing glucose levels in mouse models.

 

Source: University of Tennessee at Knoxville

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
APR 21, 2020
Health & Medicine
APR 21, 2020
How to Read COVID-19 News (Without Going Crazy)
  It can feel like COVID-19 news is consuming the country, and taking all the toilet paper and N95-masks with it. N ...
APR 22, 2020
Drug Discovery & Development
APR 22, 2020
Using Colors To Track The Spread of Drug Particles
Forensic scientists from the National Institute of Standards and Technology (NIST) are relying on color to see the sprea ...
APR 30, 2020
Cancer
APR 30, 2020
A New microRNA for the Cancer Fighting Toolkit
MiRNAs are small snippets of genetic information that regulate gene expression thought to be able to regulate up to 60% ...
MAY 03, 2020
Drug Discovery & Development
MAY 03, 2020
Hydroxychloroquine: The Controversial Use
COVID-19 was declared a public health threat on January 30th and since then it took the world by a storm with more than ...
MAY 16, 2020
Cannabis Sciences
MAY 16, 2020
Body's Own Cannabis Helps Us Forget Traumatic Events
Researchers have found that anandamide, often referred to as the body’s own cannabis, may help us forget traumatic ...
MAY 25, 2020
Cancer
MAY 25, 2020
Using Transcription Factors to Predict Bladder Cancer Prognosis
Bladder cancer is a rare form of cancer, with a relatively high recovery rate. Recurrence is still an issue; however, wi ...
Loading Comments...