NOV 15, 2018 1:29 PM PST

Making Cancer Disappear?

WRITTEN BY: Nouran Amin

Neuroblastoma is one of the most common childhood cancers and the leading cause of cancer deaths among pediatric patients younger than 5. The cancer is frequently found in the adrenal glands on top of the kidneys. Despite intensive treatment regimens, survival rates are 50%.

Most recently, researchers investigating new treatments found a combination of two drugs that made the tumors ‘disappear’ in a mouse model.

"To study neuroblastoma in the laboratory, we use a genetically modified neuroblastoma mouse model that closely recapitulates clinical features of the disease, and these mice spontaneously develop neuroblastomas within weeks after birth,” says Professor Murray Norris, deputy director of the Children's Cancer Institute Australia for Medical Research.

The combination of drugs are CBL0137, which belong to curaxins—that attack the structure of cancer cells and the second is panobinostat. The FDA has approved panobinostat previously for Melanoma and is being tested for other cancers. Additionally, CBL0137 is currently undergoing the approval process for phase I clinical trials in adults.

Credit: University of Minnesota, ‘‘Dirty’ Mice May Be Better Models of Human Biology”

“We have found that when we combined CBL0137 and panobinostat to treat mice bearing neuroblastomas, the tumors disappeared and never came back during the entire experiment, whereas the tumors continued to grow in mice that received either no treatment or only single drug treatment. This is a highly significant finding as this drug combination is the most effective therapy that we have observed in this neuroblastoma mouse model. It is unusual to see this effect, especially in these mice where neuroblastoma develops within seven weeks of birth and is aggressive in nature. In fact, the CBL0137/panobinostat combination is more effective than any other current clinical chemotherapy combinations that our laboratory has tested in these mice,” says Prof. Norris.

To specifically detect the drug-induced changes in the tumors, researchers used RNA sequencing technology to examine how the drug combination was effective enough in eliminating the neuroblastoma.

"Our results suggest that these drugs work through two different mechanisms that offer a two-pronged attack. One of these mechanisms appears to be a direct attack on the cancer cells themselves, killing them by inhibiting DNA repair; then a second mechanism is involved in inducing a robust immune response. This is very exciting and will hopefully facilitate the clinical development of effective and non-toxic therapies for childhood cancer," explains Prof. Norris.

Researchers are hopeful to continue their investigation to show how the drugs activate immune responses, slow the growth of aggressive childhood leukemia, and to test CBL0137/panobinostat with other immunotherapy drugs in mice.

Source: ScienceDaily

About the Author
BS/MS
Nouran is a scientist, educator, and life-long learner with a passion for making science more communicable. When not busy in the lab isolating blood macrophages, she enjoys writing on various STEM topics.
You May Also Like
AUG 25, 2022
Cell & Molecular Biology
From sample collection straight to RT-qPCR
AUG 25, 2022
From sample collection straight to RT-qPCR
Skip the nucleic acid purification step in your cancer detection workflow. Learn more about how Thermo Fisher Scientific ...
AUG 02, 2022
Neuroscience
Brain Derived Exosomes; a non-invasive look inside the brain
AUG 02, 2022
Brain Derived Exosomes; a non-invasive look inside the brain
Exosomes are small extracellular vesicles about the size of influenza and corona viruses and have been making news for s ...
JUL 25, 2022
Cardiology
Drug that Can Help Men Live Longer?
JUL 25, 2022
Drug that Can Help Men Live Longer?
A new study from the University of Virginia School of Medicine and recently published in Science discusses how the loss ...
AUG 01, 2022
Drug Discovery & Development
New drug could help repair nervous system damage caused by strokes
AUG 01, 2022
New drug could help repair nervous system damage caused by strokes
A recent study published in Cell Reports highlights a new drug that could help to repair nervous system damage caused by ...
AUG 09, 2022
Microbiology
An Inhaled COVID-19 Treatment Halts Viral Replication
AUG 09, 2022
An Inhaled COVID-19 Treatment Halts Viral Replication
This new approach could also be effective against many different types of RNA viruses.
SEP 30, 2022
Coronavirus
A New Kind of Antiviral Against SARS-CoV-2
SEP 30, 2022
A New Kind of Antiviral Against SARS-CoV-2
Scientists are developing a human version of a drug that was highly beneficial to a hamster model of COVID-19. The drug, ...
Loading Comments...