MAR 25, 2019 10:36 AM PDT

Investigational Drug Reverses High Cholesterol and Non-Alcoholic Fatty Liver Disease

WRITTEN BY: Nouran Amin

A novel molecular pathway was recently discovered for an enzyme inhibitor in humans that is implicated in the development of high cholesterol and nonalcoholic fatty liver disease. Such conditions were found to be reversed in a mouse model using an investigational oral drug. The drug is known as TM5614 and is reported in a new research study to impede the actions of a multifunctional protein in the body known as plasminogen activator inhibitor 1, or PAI-1.

"High blood levels of PAI-1 are a hallmark of obesity, type 2 diabetes and metabolic syndrome, a cluster of risk factors for obesity-related diseases," said the study's lead researcher, Joshua Levine, M.D., Ph.D., an endocrinology fellow at Northwestern.

Learn more about non-alcoholic fatty liver disease:

The study was conducted based on findings that individuals who inherited a loss-of-function mutation in the gene that codes for PAI-1 have developed lower fasting insulin levels than those with unaffected relatives and appear protected from developing diabetes. Therefore, researchers were curious to see if blocking PAI-1 could reverse diet-induced obesity and its related health problems.

Specifically, the study investigated induced obesity in mice by feeding them a high-fat, high-sugar mice chow equivalent to fast food. Mice were then treated with the PAI-1 inhibitor TM5614. Results showed that after a week of treatment, the mice had improved fasting levels of blood sugar, insulin and LDL, or "bad" cholesterol, in compassion to untreated mice. Additionally, treated mice exhibited a "remarkable" reduction in fatty liver disease.

Learn more about LDL, “bad” cholesterol:

"This is important because PCSK9 inhibitors are the newest drug therapy available for the treatment of high cholesterol for people who do not benefit enough from statin cholesterol-lowering medicines or cannot tolerate statins," Levine said. "However, the high cost of these drugs limits their use, and they are injections, rather than pills. The drug may eventually become a less expensive and easier alternative to PCSK9 inhibitors."

Source: The Endocrine Society

About the Author
  • Nouran enjoys writing on various topics including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
NOV 17, 2019
Drug Discovery & Development
NOV 17, 2019
Insulin Drug Could Treat Glioblastoma
A molecule used for drug delivery of insulin was recently found by researchers at the University of Georgia’s Regenerative Bioscience Center to hold...
NOV 17, 2019
Genetics & Genomics
NOV 17, 2019
Breast Cancer Drug Increases Survival for Prostate Cancer Patients
A breast cancer drug is better at treating advanced prostate cancer in some men than current therapies, a clinical trial shows....
NOV 17, 2019
Drug Discovery & Development
NOV 17, 2019
Injectable Drug reverses symptoms of liver disease in people with HIV
In a study conducted by the National Institute of Allergy and Infectious Diseases (NIAID) and the National Cancer Institute, scientists report that an inje...
NOV 17, 2019
Drug Discovery & Development
NOV 17, 2019
Fecal Transplants Could Treat Irritable Bowel Syndrome
According to the American College of Gastroenterology, between 10 and 15% of Americans have Irritable Bowel Syndrome (IBS). Although treatments are current...
NOV 17, 2019
Drug Discovery & Development
NOV 17, 2019
Investigating a common therapeutic in ADHD treatment
Attention-Deficit Hyperactivity Disorder (ADHD) is a widespread condition with variable underlying causes. A common therapeutic, called methylphenidate, se...
NOV 17, 2019
Neuroscience
NOV 17, 2019
The Women Who Can Smell Without Olfactory Bulbs
Until now, it has been commonly accepted that our sense of smell depends on the transmission of olfactory information from the nose to the olfactory bulb i...
Loading Comments...