JAN 06, 2020 10:07 AM PST

Designing Drugs To Fight off C. Diff Infections

WRITTEN BY: Nouran Amin

A study published by PNAS explains breakthrough research around designing drugs that target C. diff bacterial infections that result in 15,000 deaths in the U.S. annually. The bacterium is potentially fatal as a result of severe diarrhea, nausea, and internal bleeding.

“The most dangerous strains of C. diff release a binary toxin that first binds to cells and then creates a pore-forming channel that allows the toxin to get inside and do harm,” said Amedee de Georges, the study’s principal investigator and a professor with the Advanced Science Research Center at The Graduate Center, CUNY’s Structural Biology Iniative. “We were able to combine several increasingly popular biophysical imaging techniques to visualize and characterize every atom of this binary toxin and show us where they are positioned. These details provide a critical and extremely useful starting point for designing drugs that can prevent C. diff infection.”

The overuse of antibiotics has placed hospitals at risk for acquiring C. diff and made some strains of the bacterium resistant to most treatments. However, recent research indicated that a toxin released by the most dangerous strains of C. diff might serve as the road map to producing new drugs. The wrok was not possible without modern research tools including a combination of cryogenic electron microscopy, X-ray crystallography, nuclear magnetic resonance, and small angle X-ray scattering.

“We observed two similar but distinct forms of the C. diff toxin — one where we see the pore-forming channel and one where it is invisible,” said the first author, Xingjian Xu, a Graduate Center, CUNY Ph.D. student and a researcher in de Georges’ lab. “This gives us clues as to how to prevent the formation of the channel and stop the bacteria from entering the cell.”

Learn more about C. difficile infections:

Source: Advanced Science Research Center

About the Author
  • Nouran earned her BS and MS in Biology at IUPUI and currently shares her love of science by teaching. She enjoys writing on various topics as well including science & medicine, global health, and conservation biology. She hopes through her writing she can make science more engaging and communicable to the general public.
You May Also Like
OCT 21, 2020
Drug Discovery & Development
New ALS Treatment Extends Life for Several Months
OCT 21, 2020
New ALS Treatment Extends Life for Several Months
Currently, there are only two approved medications to treat Lou Gehrig's disease (also known as ALS), a condition po ...
OCT 07, 2020
Technology
Millimeter-Precision Drug Delivery
OCT 07, 2020
Millimeter-Precision Drug Delivery
It is almost impossible to deliver targeted drug therapy via the bloodstream without reaching the entire brain and body ...
OCT 13, 2020
Drug Discovery & Development
Uses of Tandem Mass Spectrometry (TMS)
OCT 13, 2020
Uses of Tandem Mass Spectrometry (TMS)
What is tandem mass spectrometry? A powerful analytical tool that is capable of characterizing complex mixtures in drug ...
NOV 12, 2020
Immunology
The Enzyme That Keeps Viruses In Stealth Mode
NOV 12, 2020
The Enzyme That Keeps Viruses In Stealth Mode
Some viral infections just don’t go away. The hepatitis C virus, for instance, can result in life-long chronic inf ...
NOV 20, 2020
Drug Discovery & Development
Cat Parasite Gives Clues on New Drug Targets for Schizophrenia
NOV 20, 2020
Cat Parasite Gives Clues on New Drug Targets for Schizophrenia
Researchers from the UK and France have discussed a mechanism of action behind the infamous Toxoplasma gondii  ...
NOV 25, 2020
Drug Discovery & Development
Improving Drug Dissolution
NOV 25, 2020
Improving Drug Dissolution
When you take your medicine, it travels through the bloodstream and releases its effects. When the drug dissolves too fa ...
Loading Comments...