JUL 19, 2016 7:13 PM PDT

New discoveries about photosynthesis may lead to solar cells of the future

For the first time, researchers have successfully measured in detail the flow of solar energy, in and between different parts of a photosynthetic organism. The result is a first step in research that could ultimately contribute to the development of technologies that use solar energy far more efficiently than what is currently possible.
 
Scientists have been able to locate the routes along which solar energy is transported during the photosynthesis using ultrafast spectroscopy. Credit: Marcelo Alcocer
 
For about 80 years, researchers have known that photochemical reactions inside an organism do not occur in the same place as where it absorbs sunlight. What has not been known, however, is how and along what routes the solar energy is transported into the photosynthetic organism -- until now.

"Not even the best solar cells that we as humans are capable of producing can be compared to what nature performs in the first stages of energy conversion. That is why new knowledge about photosynthesis will become useful for the development of future solar technologies," says Donatas Zigmantas, Faculty of Science at Lund University, Sweden.

Together with his colleagues Jakub Dostál, Lund University, and Jakub Pšen?ík, Charles University in Prague, Donatas Zigmantas has studied the photosynthesis of bacterial cells. Using ultrafast spectroscopy -- a measurement method that uses light to study molecules etc. -- they were able to locate the routes along which solar energy is transported. The routes run both within and between the components of a photosynthetic cell. According to the researchers, their discovery demonstrates how the biological machinery is connected.

The research results show that the transport of solar energy is much more efficient within, than between, different cell components. It limits the transfer of energy between the components and thereby also the efficiency of the entire photosynthetic energy conversion process.
 

"We have identified the transport routes as well as the bottlenecks that cause congestion in the photosynthetic energy conversion. In the future, this knowledge can be used within solar cell technology," says Donatas Zigmantas.

So far this is basic research -- more studies of how energy is transported in both natural and artificial systems are needed before the results can be turned into practice.

"However, in the longer term, our results might well provide the basis for the development and manufacturing of systems on a molecular level that collect, store and transport sunlight to the solar cells," says Donatas Zigmantas.

The Lund researchers' discoveries were recently published in an article in the scientific journal Nature Chemistry.

Source: The above post is reprinted from materials provided by Lund University. Note: Materials may be edited for content and length.
About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
SEP 22, 2021
Earth & The Environment
Farming Fish Sustainably
SEP 22, 2021
Farming Fish Sustainably
Fish farming has become a necessary practice as the population grows. It can be controversial among some groups because ...
SEP 24, 2021
Earth & The Environment
We've Killed Half the World's Coral
SEP 24, 2021
We've Killed Half the World's Coral
A recent study published in One Earth on Sep. 17 paints a poor picture for the state of the world’s coral reefs. L ...
OCT 06, 2021
Chemistry & Physics
Chemistry and Magic: Identifying the Oldest Records of Merlin the Magician
OCT 06, 2021
Chemistry and Magic: Identifying the Oldest Records of Merlin the Magician
Historians may have found the earliest manuscripts that tell the story of Merlin the Magician. Merlin is a character fro ...
OCT 10, 2021
Genetics & Genomics
Who Were the Etruscans? A Genetic Study Provides Some Answers
OCT 10, 2021
Who Were the Etruscans? A Genetic Study Provides Some Answers
The Etruscans lived in what is now Italy from about 800 BCE to the first century CE. Their language is now gone...
OCT 21, 2021
Chemistry & Physics
The Threat of Satellite Swarms
OCT 21, 2021
The Threat of Satellite Swarms
Gazing up at the night sky as a child, I loved to point out the satellites blinking in the night sky. Often, I could see ...
NOV 23, 2021
Genetics & Genomics
Female Condors Reproduced Asexually Even Though Males Were Available
NOV 23, 2021
Female Condors Reproduced Asexually Even Though Males Were Available
Some animals can produce offspring from an unfertilized egg in an asexual reproduction process known as parthogenesis. W ...
Loading Comments...