MAR 29, 2015 6:47 AM PDT

Termites: Unlikely Protectors of Agricultural Lands

Termites might not top the list of humanity's favorite insects, but new research suggests that their large dirt mounds are crucial to stopping the spread of deserts into semi-arid ecosystems and agricultural lands. The results not only suggest that termite mounds could make these areas more resilient to climate change than previously thought, but could also inspire a change in how scientists determine the possible effects of climate change on ecosystems.
Termite mounds store nutrients and moisture, and allow water to better penetrate the soil.
In the parched grasslands and savannas, or drylands, of Africa, South America and Asia, termite mounds store nutrients and moisture, and -- via internal tunnels -- allow water to better penetrate the soil. As a result, vegetation flourishes on and near termite mounds in ecosystems that are otherwise highly vulnerable to "desertification," or the environment's collapse into desert.
Princeton University researchers report in the journal Science that termites slow the spread of deserts into drylands by providing a moist refuge for vegetation on and around their mounds. They report that drylands with termite mounds can survive on significantly less rain than those without termite mounds.

The research was inspired by fungus-growing termites of the genus Odontotermes, but the theoretical results apply to all types of termites that increase resource availability on and/or around their nests. Corresponding author Corina Tarnita, a Princeton assistant professor in ecology and evolutionary biology, explained that termite mounds also preserve seeds and plant life, which helps surrounding areas rebound faster once rainfall resumes.

"The rain is the same everywhere, but because termites allow water to penetrate the soil better, the plants grow on or near the mounds as if there were more rain," Tarnita said.

"The vegetation on and around termite mounds persists longer and declines slower," she said. "Even when you get to such harsh conditions where vegetation disappears from the mounds, re-vegetation is still easier. As long as the mounds are there the ecosystem has a better chance to recover."

(Source: Princeton University)
About the Author
English
I'm a writer living in the Boston area. My interests include cancer research, cardiology and neuroscience. I want to be part of using the Internet and social media to educate professionals and patients in a collaborative environment.
You May Also Like
AUG 20, 2022
Technology
Biofilm can Convert Energy from Evaporation into Electricity
AUG 20, 2022
Biofilm can Convert Energy from Evaporation into Electricity
In a recent study published in Nature Communications, a team of researchers at the University of Massachusetts (UMass) A ...
AUG 21, 2022
Drug Discovery & Development
Eczema Drug Helps Increase Covid-19 Survival Rates, Clinical Study Suggests
AUG 21, 2022
Eczema Drug Helps Increase Covid-19 Survival Rates, Clinical Study Suggests
In a recent study published in Open Forum Infectious Diseases, a clinical study led by the University of Virginia (UVA) ...
AUG 26, 2022
Technology
Recycling PPE to Make Stronger Concrete
AUG 26, 2022
Recycling PPE to Make Stronger Concrete
When you’re done wearing that face mask, where does it go?  The use of personal protective equipment (PPE) sk ...
SEP 15, 2022
Plants & Animals
Higher CO2 Levels in the Atmosphere Lead to Bigger, Less Nutritious Plants
SEP 15, 2022
Higher CO2 Levels in the Atmosphere Lead to Bigger, Less Nutritious Plants
Rising CO2 levels continue to raise alarm around the world, highlighting the dangerous ways climate change is impacting ...
SEP 20, 2022
Space & Astronomy
Astronomers Develop Novel Technique to Locate Baby Planets
SEP 20, 2022
Astronomers Develop Novel Technique to Locate Baby Planets
In a recent study published in The Astrophysical Journal Letters, an international team of researchers have created a no ...
SEP 21, 2022
Space & Astronomy
Are Water Worlds Common?
SEP 21, 2022
Are Water Worlds Common?
A study recently published in Science suggests that many exoplanets have larger amounts of water than previously thought ...
Loading Comments...